Skip to main content

Learning Free-Form Deformations for 3D Object Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Included in the following conference series:

Abstract

Representing 3D shape in deep learning frameworks in an accurate, efficient and compact manner still remains an open challenge. Most existing work addresses this issue by employing voxel-based representations. While these approaches benefit greatly from advances in computer vision by generalizing 2D convolutions to the 3D setting, they also have several considerable drawbacks. The computational complexity of voxel-encodings grows cubically with the resolution thus limiting such representations to low-resolution 3D reconstruction. In an attempt to solve this problem, point cloud representations have been proposed. Although point clouds are more efficient than voxel representations as they only cover surfaces rather than volumes, they do not encode detailed geometric information about relationships between points. In this paper we propose a method to learn free-form deformations (Ffd) for the task of 3D reconstruction from a single image. By learning to deform points sampled from a high-quality mesh, our trained model can be used to produce arbitrarily dense point clouds or meshes with fine-grained geometry. We evaluate our proposed framework on synthetic data and achieve state-of-the-art results on surface and volumetric metrics. We make our implementation publicly available (Tensorflow implementation available at github.com/jackd/template_ffd.).

This research was supported by the Australian Research Council through the grant ARC FT170100072. Computational resources used in this work were provided by the HPC and Research Support Group, QUT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. ACM Trans. Graph. 36 (2017)

    Article  Google Scholar 

  2. Huang, Q., Wang, H., Koltun, V.: Single-view reconstruction via joint analysis of image and shape collections. ACM Trans. Graph. 34 (2015)

    Google Scholar 

  3. Maier, R., Kim, K., Cremers, D., Kautz, J., Nießner, M.: Intrinsic3D: high-quality 3D reconstruction by joint appearance and geometry optimization with spatially-varying lighting. In: ICCV (2017)

    Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  5. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. TPAMI 35, 1915–1929 (2013)

    Article  Google Scholar 

  6. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. TPAMI 31, 855–868 (2009)

    Article  Google Scholar 

  7. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  8. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: NIPS (2016)

    Google Scholar 

  9. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: CVPR (2016)

    Google Scholar 

  10. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NIPS (2017)

    Google Scholar 

  11. Zhu, R., Galoogahi, H.K., Wang, C., Lucey, S.: Rethinking reprojection: closing the loop for pose-aware shape reconstruction from a single image. In: NIPS (2017)

    Google Scholar 

  12. Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, W.T., Tenenbaum, J.B.: MarrNet: 3D shape reconstruction via 2.5D sketches. In: NIPS (2017)

    Google Scholar 

  13. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)

    Google Scholar 

  14. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  15. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS (2017)

    Google Scholar 

  16. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D object reconstruction. In: AAAI (2018)

    Google Scholar 

  17. Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. In: SIGGRAPH (1986)

    Google Scholar 

  18. Ulusoy, A.O., Geiger, A., Black, M.J.: Towards probabilistic volumetric reconstruction using ray potential. In: 3DV (2015)

    Google Scholar 

  19. Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR (2015)

    Google Scholar 

  20. Cherabier, I., Häne, C., Oswald, M.R., Pollefeys, M.: Multi-label semantic 3D reconstruction using voxel blocks. In: 3DV (2016)

    Google Scholar 

  21. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  22. Rezende, D.J., Eslami, S.M.A., Mohamed, S., Battaglia, P., Jaderberg, M., Heess, N.: Unsupervised learning of 3D structure from images. In: NIPS (2016)

    Google Scholar 

  23. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  24. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS (2016)

    Google Scholar 

  25. Liu, J., Yu, F., Funkhouser, T.A.: Interactive 3D modeling with a generative adversarial network. In: 3DV (2017)

    Google Scholar 

  26. Gwak, J., Choy, C.B., Garg, A., Chandraker, M., Savarese, S.: Weakly supervised generative adversarial networks for 3D reconstruction. In: 3DV (2017)

    Google Scholar 

  27. Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: CVPR (2017)

    Google Scholar 

  28. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. In: SIGGRAPH (2017)

    Google Scholar 

  29. Häne, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3D object reconstruction. In: 3DV (2017)

    Google Scholar 

  30. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: ICCV (2017)

    Google Scholar 

  31. Lun, Z., Gadelha, M., Kalogerakis, E., Maji, S., Wang, R.: 3D shape reconstruction from sketches via multi-view convolutional networks. In: 3DV (2017)

    Google Scholar 

  32. Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: SurfNet: generating 3D shape surfaces using deep residual network. In: CVPR (2017)

    Google Scholar 

  33. Yumer, M.E., Mitra, N.J.: Learning semantic deformation flows with 3D convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 294–311. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_18

    Chapter  Google Scholar 

  34. Kong, C., Lin, C.H., Lucey, S.: Using locally corresponding CAD models for dense 3D reconstructions from a single image. In: CVPR (2017)

    Google Scholar 

  35. Pontes, J.K., Kong, C., Eriksson, A., Fookes, C., Sridharan, S., Lucey, S.: Compact model representation for 3D reconstruction. In: 3DV (2017)

    Google Scholar 

  36. Kurenkov, A., et al.: DeformNet: free-form deformation network for 3D shape reconstruction from a single image. Volume abs/1708.04672 (2017)

    Google Scholar 

  37. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 99–121 (2000)

    Article  Google Scholar 

  38. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  39. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  40. Chang, A.X., et al.: ShapeNet: an Information-Rich 3D Model Repository. Technical report arXiv:1512.03012 [cs.GR] (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Jack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jack, D. et al. (2019). Learning Free-Form Deformations for 3D Object Reconstruction. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics