Skip to main content

Pioneer Networks: Progressively Growing Generative Autoencoder

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

We introduce a novel generative autoencoder network model that learns to encode and reconstruct images with high quality and resolution, and supports smooth random sampling from the latent space of the encoder. Generative adversarial networks (GANs) are known for their ability to simulate random high-quality images, but they cannot reconstruct existing images. Previous works have attempted to extend GANs to support such inference but, so far, have not delivered satisfactory high-quality results. Instead, we propose the Progressively Growing Generative Autoencoder (Pioneer) network which achieves high-quality reconstruction with \(128\times 128\) images without requiring a GAN discriminator. We merge recent techniques for progressively building up the parts of the network with the recently introduced adversarial encoder–generator network. The ability to reconstruct input images is crucial in many real-world applications, and allows for precise intelligent manipulation of existing images. We show promising results in image synthesis and inference, with state-of-the-art results in CelebA inference tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  2. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Neural photo editing with introspective adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  3. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  4. Dumoulin, V., et al.: Adversarially learned inference. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems (NIPS), pp. 5767–5777 (2017)

    Google Scholar 

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems (NIPS), pp. 6626–6637 (2017)

    Google Scholar 

  8. Jimenez Rezende, D., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on Machine Learning, pp. 1278–1286 (2014)

    Google Scholar 

  9. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  11. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014). https://arxiv.org/abs/1312.6114

  12. Larsen, A., Kaae Sønderby, S., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 1558–1566 (2016)

    Google Scholar 

  13. Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  14. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738 (2015)

    Google Scholar 

  15. Luo, J., Xu, Y., Tang, C., Lv, J.: Learning inverse mapping by autoencoder based generative adversarial nets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.M. (eds.) Neural Information Processing (ICONIP) 2017. LNCS, vol. 10635, pp. 207–216. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70096-0_22

    Chapter  Google Scholar 

  16. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  17. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821 (2017)

    Google Scholar 

  18. Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational Bayes: unifying variational autoencoders and generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 2391–2400 (2017)

    Google Scholar 

  19. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  20. Qi, G.J.: Loss-sensitive generative adversarial networks on Lipschitz densities. arXiv preprint arXiv:1701.06264 (2017)

  21. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_37

    Chapter  Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  23. Rosca, M., Lakshminarayanan, B., Mohamed, S.: Distribution matching in variational inference. arXiv preprint arXiv:1802.06847 (2018)

  24. Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:1706.04987 (2017)

  25. Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: Advances in Neural Information Processing Systems, pp. 2018–2028 (2017)

    Google Scholar 

  26. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  27. Tabor, J., Knop, S., Spurek, P., Podolak, I., Mazur, M., Jastrzębski, S.: Cramer-wold autoencoder. arXiv preprint arXiv:1805.09235 (2018)

  28. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Adversarial generator-encoder networks (2018). https://github.com/DmitryUlyanov/AGE. gitHub repository

  29. Ulyanov, D., Vedaldi, A., Lempitsky, V.: It takes (only) two: adversarial generator-encoder networks. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-2018), pp. 1250–1257 (2018)

    Google Scholar 

  30. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  31. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  32. Zhou, W., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qualifty assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2008)

    Google Scholar 

Download references

Acknowledgments

We thank Tero Karras, Dmitry Ulyanov, and Jaakko Lehtinen for fruitful discussions. We acknowledge the computational resources provided by the Aalto Science-IT project. Authors acknowledge funding from the Academy of Finland (grant numbers 308640 and 277685) and GenMind Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Heljakka .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12162 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heljakka, A., Solin, A., Kannala, J. (2019). Pioneer Networks: Progressively Growing Generative Autoencoder. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20887-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20886-8

  • Online ISBN: 978-3-030-20887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics