Skip to main content

Shape-Conditioned Image Generation by Learning Latent Appearance Representation from Unpaired Data

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

Conditional image generation is effective for diverse tasks including training data synthesis for learning-based computer vision. However, despite the recent advances in generative adversarial networks (GANs), it is still a challenging task to generate images with detailed conditioning on object shapes. Existing methods for conditional image generation use category labels and/or keypoints and are only give limited control over object categories. In this work, we present SCGAN, an architecture to generate images with a desired shape specified by an input normal map. The shape-conditioned image generation task is achieved by explicitly modeling the image appearance via a latent appearance vector. The network is trained using unpaired training samples of real images and rendered normal maps. This approach enables us to generate images of arbitrary object categories with the target shape and diverse image appearances. We show the effectiveness of our method through both qualitative and quantitative evaluation on training data generation tasks.

This work was supported by JST CREST Grant Number JPMJCR1781, Japan, and partly by the New Energy and Industrial Technology Development Organization (NEDO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised domain adaptation by domain invariant projection. In: Proceedings of the ICCV, pp. 769–776 (2013)

    Google Scholar 

  2. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proceedings of the CVPR, pp. 95–104 (2017)

    Google Scholar 

  3. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Neural photo editing with introspective adversarial networks. In: Proceedings of the ICLR (2017)

    Google Scholar 

  4. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  5. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the NIPS, pp. 1–14 (2016)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the CVPR, pp. 248–255 (2009)

    Google Scholar 

  7. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: Proceedings of the ICLR (2017)

    Google Scholar 

  8. Ganin, Y., et al.: Domain-adversarial training of neural networks. JMLR 17, 1–35 (2015)

    MathSciNet  Google Scholar 

  9. Goodfellow, I., Pouget-Abadie, J., Mirza, M.: Generative adversarial networks. In: Proceedings of the NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: Proceedings of the NIPS, pp. 5769–5779 (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  14. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the CVPR, pp. 3296–3305 (2017)

    Google Scholar 

  15. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 1–14 (2017). https://dl.acm.org/citation.cfm?id=3073659

    Article  Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Junbo Zhao, M.M., LeCun, Y.: Energy-based GAN. In: Proceedings of the ICLR, pp. 32–48 (2015)

    Google Scholar 

  18. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: Proceedings of the ICLR, pp. 1–25 (2018)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the ICLR (2015)

    Google Scholar 

  20. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: ACM Multimedia, pp. 4681–4690 (2016)

    Google Scholar 

  21. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. In: Proceedings of the NIPS, pp. 405–415 (2017)

    Google Scholar 

  22. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: Proceedings of the ICCV, November 2017

    Google Scholar 

  23. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the ICML (2017)

    Google Scholar 

  24. Qiu, W., Yuille, A.: UnrealCV: connecting computer vision to unreal engine. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 909–916. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_75

    Chapter  Google Scholar 

  25. Reed, S., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: Proceedings of the NIPS, pp. 217–225 (2016)

    Google Scholar 

  26. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIADataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the CVPR, pp. 3234–3243 (2016)

    Google Scholar 

  27. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the CVPR, p. 6 (2017)

    Google Scholar 

  28. Sixt, L., Wild, B., Landgraf, T.: RenderGAN: generating realistic labeled data. Front. Rob. AI 5, 66 (2018)

    Article  Google Scholar 

  29. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative adversarial networks. In: Proceedings of the ICLR (2016)

    Google Scholar 

  30. Sun, B., Saenko, K.: From virtual to reality: fast adaptation of virtual object detectors to real domains. In: Proceedings of the BMVC, pp. 82.1–82.12 (2014)

    Google Scholar 

  31. Tan, W.R., Chan, C.S., Aguirre, H., Tanaka, K.: ArtGAN: artwork synthesis with conditional categorial GANs. In: Proceedings of the ICIP, p. 10 (2017)

    Google Scholar 

  32. Vazquez, D., Lopez, A.M., Marin, J., Ponsa, D., Geronimo, D.: Virtual and real world adaptation for pedestrian detection. In: IEEE TPAMI, pp. 797–809 (2014)

    Google Scholar 

  33. Wood, E., Baltrus̆aitis, T., Morency, L.P., Robinson, P., Bulling, A.: Learning an appearance-based gaze estimator from one million synthesised images. In: ACM Symposium on Eye Tracking Research & Applications, pp. 131–138 (2016)

    Google Scholar 

  34. Xiang, Y., et al.: ObjectNet3D: a large scale database for 3D object recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 160–176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_10

    Chapter  Google Scholar 

  35. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  36. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the ICCV, pp. 2039–2049 (2017)

    Google Scholar 

  37. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the CVPR, pp. 5810–5818 (2017)

    Google Scholar 

  38. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  39. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaro Miyauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miyauchi, Y., Sugano, Y., Matsushita, Y. (2019). Shape-Conditioned Image Generation by Learning Latent Appearance Representation from Unpaired Data. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics