Skip to main content

Josephson Junctions for Metrology Applications

  • Chapter
  • First Online:
Fundamentals and Frontiers of the Josephson Effect

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 286))

Abstract

The Josephson effect has revolutionized voltage metrology [15] and, together with the quantum Hall effect for resistance and atomic clocks for time and frequency, has enabled measurement standards based on quantum effects.

This work is a contribution of the U.S. government and is not subject to U.S. copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.L. Kautz, Noise, chaos, and the Josephson voltage standard. Rep. Progr. Phys. 59, 935 (1996)

    Article  ADS  Google Scholar 

  2. J. Niemeyer, Applications, in Handbook of Applied Superconductivity, vol. 2 (IOP, Bristol, 1998), p. 1813

    Google Scholar 

  3. C.A. Hamilton, Josephson voltage standards. Rev. Sci. Instrum. 71, 3611 (2000)

    Article  ADS  Google Scholar 

  4. B. Jeanneret, S.P. Benz, Application of the Josephson effect in electrical metrology, in Proceedings of the International School on “Quantum Metrology and Fundamental Constants,” ed. by F. Piquemal, B. Jeckelmann. Les Houches, France, 1–12 Oct 2007, published jointly by EDP Sciences and Springer Verlag in The European Physical Journal Special Topics, vol. 172, pp. 181–206, 1 June 2009

    Google Scholar 

  5. S.P. Benz, Synthesizing accurate voltages with superconducting quantum-based standards. IEEE Instr. Measur. Mag. 13(3), 8 (2010)

    Article  Google Scholar 

  6. P.J. Mohr, The quantum SI: a possible new international system of units, Chap. 3, in Advances in Quantum Chemistry, vol. 53 (Academic Press, 2008), pp. 27–36. https://doi.org/10.1016/s0065-3276(07)53003-0

    Chapter  Google Scholar 

  7. J. Fischer, J. Ullrich, The new system of units. Nat. Phys. 12(1), 4–7 (2016). https://doi.org/10.1038/nphys3612

    Article  Google Scholar 

  8. P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88(3), 035009-1-73 (2016). https://doi.org/10.1103/revmodphys.88.035009

  9. C.A. Hamilton, F.L. Lloyd, C. Kao, W.C. Goeke, A 10-V Josephson voltage standard. IEEE Trans. Instrum. Meas. 38, 314 (1989)

    Article  Google Scholar 

  10. S.P. Benz, C.J. Burroughs, C.A. Hamilton, Operating margins for a pulse-driven programmable voltage standard. IEEE Trans. Appl. Supercond. 7, 2653–2656 (1997)

    Article  ADS  Google Scholar 

  11. S.P. Benz, C.A. Hamilton, C.J. Burroughs, T.E. Harvey, AC and dc bipolar voltage source using quantized pulses. IEEE Trans. Inst. Meas. 48(2), 266–269 (1999)

    Article  Google Scholar 

  12. S.P. Benz, C.J. Burroughs, P.D. Dresselhaus, AC coupling technique for Josephson waveform synthesis. IEEE Trans. Appl. Supercond. 11(1), 612–616 (2001)

    Article  ADS  Google Scholar 

  13. O.A. Chevtchenko et al., Realization of a quantum standard for ac voltage: overview of a European research project. IEEE Trans. Inst. Meas. 54(2), 628–631 (2005)

    Article  Google Scholar 

  14. E. Houtzager, S.P. Benz, H.E. van den Brom, Operating margins for a pulse-driven Josephson arbitrary waveform synthesizer using a ternary bit-stream generator. IEEE Trans. Instrum. Meas. 58(4), 775–780 (2009)

    Article  Google Scholar 

  15. S.P. Benz, S.B. Waltman, Pulse-bias electronics and techniques for a Josephson arbitrary waveform synthesizer. IEEE Trans. Appl. Supercond. 24(6), 1400107-6 (2014). https://doi.org/10.1109/tasc.2014.2338326

    Article  Google Scholar 

  16. C.J. Burroughs, S.P. Benz, C.A. Hamilton, T.E. Harvey, 1 volt dc programmable voltage standard system. IEEE Trans. Appl. Supercond. 9(2), 4145–4149 (1999)

    Article  ADS  Google Scholar 

  17. Y. Tang, V.N. Ojha, S. Schlamminger, A. Rüfenacht, C.J. Burroughs, P.D. Dresselhaus, S.P. Benz, A 10 V programmable Josephson voltage standard and its applications for voltage metrology. Metrologia 49, 635–643 (2012). https://doi.org/10.1088/0026-1394/49/6/63

    Article  ADS  Google Scholar 

  18. J. Brun-Picard, S. Djordjevic, D. Leprat, F. Schopfer, W. Poirier, Practical quantum realization of the ampere from the elementary charge. Phys. Rev. X 6, 041051-15 (2016). https://doi.org/10.1103/physrevx.6.041051

    Article  Google Scholar 

  19. N.E. Flowers-Jacobs, A.E. Fox, P.D. Dresselhaus, R.E. Schwall, S.P. Benz, Two-volt Josephson arbitrary waveform synthesizer using Wilkinson dividers. IEEE Trans. Appl. Supercond. 26(6), 1400207-7 (2016). https://doi.org/10.1109/tasc.2016.2532798

    Article  Google Scholar 

  20. R. Behr, O. Kieler, J. Lee, S. Bauer, L. Palafox, J. Kohlmann, Direct comparison of a 1 V Josephson arbitrary waveform synthesizer and an ac quantum voltmeter. Metrologia 52, 528–537 (2015)

    Article  ADS  Google Scholar 

  21. F. Overney et al., Josephson-based full digital bridge for high-accuracy impedance comparisons. Metrologia 53, 1045 (2016)

    Article  ADS  Google Scholar 

  22. S.P. Benz, J.M. Martinis, S.W. Nam, W.L. Tew, D.R. White, A new approach to Johnson noise thermometry using a Josephson quantized voltage source for calibration, in Proceedings of TEMPMEKO 2001, the 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by B. Fellmuth, J. Seidel, G. Scholz, vol. 19 (VDE Verlag, Berlin, 2002), pp. 37–44

    Google Scholar 

  23. C. Urano et al., Johnson noise thermometry based on integrated quantum voltage noise source. IEEE Trans. Appl. Supercond. 26(3), 1800305-5 (2016)

    Google Scholar 

  24. S.P. Benz, A. Pollarolo, J. Qu, H. Rogalla, C. Urano, W.L. Tew, P.D. Dresselhaus, D.R. White, An electronic measurement of the Boltzmann constant. Metrologia 48, 142–153 (2011)

    Article  ADS  Google Scholar 

  25. J. Qu et al., Improved electronic measurement of the Boltzmann constant by Johnson noise thermometry. Metrologia 52, S242–S256 (2015)

    Article  Google Scholar 

  26. J. Fischer et al., The Boltzmann project. Metrologia 55(2), R1–R20 (2018). https://doi.org/10.1088/1681-7575/aaa790

    Article  ADS  Google Scholar 

  27. Y.-H. Tang, R.T. Hunt, R. Robertazzi, M. Fisher, J. Coughlin, R. Patt, E.K. Track, E. Potenziani, Cryocooled primary voltage standard system. IEEE Trans. Instrum. Meas. 46(2), 256–259 (1997)

    Article  Google Scholar 

  28. A. Shoji, H. Yamamori, M. Ishizaki, S.P. Benz, P.D. Dresselhaus, Operation of a NbN-based programmable Josephson voltage standard chip with a compact refrigeration system. IEEE Trans. Appl. Supercond. 13(2), 919–921 (2003)

    Article  ADS  Google Scholar 

  29. T. Yamada, Y. Murayama, H. Yamamori, H. Sasaki, A. Shoji, A. Iwasa, H. Nishinaka, Y. Nakamura, Comparison of a multichip 10-V programmable Josephson voltage standard system with a superconductor-insulator- superconductor-based conventional system. IEEE Trans. Instrum. Meas. 58, 832–837 (2009)

    Article  Google Scholar 

  30. M. Schubert, M. Starkloff, M. Meyer, G. Wende, S. Anders, B. Steinbach, T. May, H.-G. Meyer, First direct comparison of a cryocooler-based Josephson voltage standard system at 10 V. IEEE Trans. Instrum. Meas. 58, 816–820 (2009)

    Article  Google Scholar 

  31. R.E. Schwall, D.P. Zilz, J. Power, C.J. Burroughs, P.D. Dresselhaus, S.P. Benz, Practical operation of cryogen-free programmable Josephson voltage standards. IEEE Trans. Appl. Supercond. 21(3), 891–895 (2011)

    Article  ADS  Google Scholar 

  32. A. Rüfenacht, L. Howe, A.E. Fox, R.E. Schwall, P.D. Dresselhaus, C.J. Burroughs, S.P. Benz, Cryocooled 10 V programmable Josephson voltage standard. IEEE Trans. Inst. Meas. 64(6), 1477–1482 (2015). https://doi.org/10.1109/tim.2014.2374697

    Article  Google Scholar 

  33. M. Schubert et al., A dry-cooled AC quantum voltmeter. Supercond. Sci. Technol. 29, 105014–105018 (2016)

    Article  ADS  Google Scholar 

  34. S. Solve, A. Rüfenacht, C.J. Burroughs, S.P. Benz, Direct comparison of two NIST PJVS systems at 10 V. Metrologia 50, 441–451 (2013). stacks.iop.org/Met/50/441, https://doi.org/10.1088/0026-1394/50/5/441

    Article  ADS  Google Scholar 

  35. A. Rüfenacht, Y.-H. Tang, A.E. Fox, P.D. Dresselhaus, C.J. Burroughs, R.E. Schwall, S.P. Benz, 10 volt automated direct comparison of two cryocooled programmable Josephson voltage standards, in 30th Conference on Precision Electromagnetic Measurements (CPEM 2016) Digest, presented 10–15 July 2016, Ottawa, Canada, pp. 1–2. https://doi.org/10.1109/cpem.2016.7540474

  36. O.F. Kieler, R. Behr, D. Schleussner, L. Palafox, J. Kohlmann, Precision comparison of sine waveforms with pulse-driven Josephson arrays. IEEE Trans. Appl. Supercond. 23(3), 1301404–1301404 (2013)

    Article  Google Scholar 

  37. N.E. Flowers-Jacobs, A. Rüfenacht, A.E. Fox, P.D. Dresselhaus, S.P. Benz, 2 Volt Pulse-Driven Josephson Arbitrary Waveform Synthesizer, in 30th Conference on Precision Electromagnetic Measurements (CPEM 2016) Digest, presented 10–15 July 2016, Ottawa, Canada, p. 152

    Google Scholar 

  38. J.-S. Tsai, A.K. Jain, J.E. Lukens, High-precision test of the universality of the Josephson voltage-frequency relation. Phys. Rev. Lett. 51(4), 316 (1983)

    Article  ADS  Google Scholar 

  39. A.K. Jain, J.E. Lukens, J.-S. Tsai, Test for relativistic gravitational effects on charged particles. Phys. Rev. Lett. 58, 1165 (1987)

    Article  ADS  Google Scholar 

  40. T.L. Nicholson, et al., Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Comm. 6, Article number: 6896 (2015). https://doi.org/10.1038/ncomms7896

  41. C.J. Burroughs, P.D. Dresselhaus, A. Rüfenacht, M.M. Elsbury, S.P. Benz, NIST 10 V programmable Josephson voltage standard system. IEEE Trans. Inst. Meas. 60(7), 2482–2488 (2011)

    Article  Google Scholar 

  42. F. Müller, T. Scheller, R. Wendisch, R. Behr, O. Kieler, L. Palafox, J. Kohlmann, NbSi barrier junctions tuned for metrological applications up to 70 GHz: 20 V arrays for programmable Josephson voltage standards. IEEE Trans. Appl. Supercond. 3(3), 1101005-5 (2013)

    Article  Google Scholar 

  43. H. Yamamori, T. Yamada, H. Sasaki, A. Shoji, A 10 V programmable Josephson voltage standard circuit with a maximum output voltage of 20 V. Supercond. Sci. Technol. 21(10), 105007 (2008)

    Article  ADS  Google Scholar 

  44. S.K. Khorshev, A.I. Pashkovsky, N.V. Rogozhkina, M.Yu. Levichev, E.E. Pestov, A.S. Katkov, R. Behr, J. Kohlmann, A.M. Klushin, Accuracy of the new voltage standard using Josephson junctions cooled to 77 K, in 30th Conference on Precision Electromagnetic Measurements (CPEM 2016) Digest, presented 10–15 July 2016, Ottawa, Canada, pp. 1–2. https://doi.org/10.1109/cpem.2016.7540701

  45. A.E. Fox, P.D. Dresselhaus, A. Rüfenacht, A. Sanders, S.P. Benz, Junction yield analysis for 10 V programmable Josephson voltage standard devices. IEEE Trans. Appl. Supercond. 25(3), 1101505-5 (2015). https://doi.org/10.1109/tasc.2014.2377744

    Article  Google Scholar 

  46. C.A. Hamilton, C.J. Burroughs, R.L. Kautz, Josephson D/A converter with fundamental accuracy. IEEE Trans. Instrum. Meas. 44(2), 223–225 (1995)

    Article  Google Scholar 

  47. S.P. Benz et al., Stable 1-Volt programmable voltage standard. Appl. Physics Lett. 71, 1866–1868 (1997)

    Article  ADS  Google Scholar 

  48. C.J. Burroughs et al., 1 Volt dc programmable Josephson voltage standard. IEEE Trans. Appl. Supercond. 9, 4145–4149 (1999)

    Article  ADS  Google Scholar 

  49. Y. Chong, C.J. Burroughs, P.D. Dresselhaus, N. Hadacek, H. Yamamori, S.P. Benz, 2.6 V high-resolution programmable Josephson voltage standard circuits using double-stacked MoSi2-barrier junctions. IEEE Trans. Inst. Meas. 54(2), 616–619 (2005)

    Article  Google Scholar 

  50. C.J. Burroughs, S.P. Benz, C.A. Hamilton, T.E. Harvey, J.R. Kinard, T.E. Lipe, H. Sasaki, Thermoelectric transfer difference of thermal converters measured with a Josephson source. IEEE Trans. Inst. Meas. 48(2), 282–284 (1999)

    Article  Google Scholar 

  51. T. Funck, R. Behr, M. Klonz, Fast reversed dc measurements on thermal converters using a SINIS Josephson junction array. Trans. Inst. Meas. 50(2), 322–325 (2001)

    Article  Google Scholar 

  52. H. Sasaki, H. Yamamori, H. Fujiki, K. Takahashi, A. Shoji, Measurement of thermoelectric effects in a thermal converter using a NbN/TiN/NbN Josephson junction array. Trans. Inst. Meas. 52(2), 359–362 (2003)

    Article  Google Scholar 

  53. R. Behr, L. Palafox, G. Ramm, H. Moser, J. Melcher, Direct comparison of Josephson waveforms using an AC quantum voltmeter. IEEE Trans. Instrum. Meas. 56(2), 235–238 (2007)

    Article  Google Scholar 

  54. C.J. Burroughs, A. Rufenacht, S.P. Benz, P.D. Dresselhaus, B.C. Waltrip, T.L. Nelson, Error and transient analysis of stepwise-approximated sinewaves generated by programmable Josephson voltage standards. IEEE Trans. Inst. Meas. 57(7), 1322–1329 (2008)

    Article  Google Scholar 

  55. C.J. Burroughs, A. Rüfenacht, S.P. Benz, P.D. Dresselhaus, Systematic error analysis of stepwise approximated ac waveforms generated by a programmable Josephson voltage standard. IEEE Trans. Inst. Meas. 58(4), 761–767 (2009)

    Article  Google Scholar 

  56. C.J. Burroughs, A. Rufenacht, S.P. Benz, P.D. Dresselhaus, Method for ensuring accurate ac waveforms with programmable Josephson voltage standards. IEEE Trans. Inst. Meas. 62(6), 1627–1633 (2013). https://doi.org/10.1109/tim.2013.2250192

    Article  Google Scholar 

  57. A. Rüfenacht et al., Precision differential sampling measurements of low-frequency voltages synthesized with an ac programmable Josephson voltage standard. IEEE Trans. Inst. Meas. 58, 809–815 (2009)

    Article  Google Scholar 

  58. M.-S. Kim, K.-T. Kim, W.-S. Kim, Y. Chong S.-W. Kwon, Analog-to-digital conversion for low-frequency waveforms based on the Josephson voltage standard. Meas. Sci. Technol. 21, 115102-6 (2010)

    Article  ADS  Google Scholar 

  59. A. Rüfenacht, C.J. Burroughs, S.P. Benz, P.D. Dresselhaus, Differential sampling measurement of a 7 V rms sine wave and a programmable Josephson voltage standard. IEEE Trans. Inst. Meas. 62(6), 1587–1593 (2013). https://doi.org/10.1109/tim.2013.2237993

    Article  Google Scholar 

  60. J. Lee et al., An ac quantum voltmeter based on a 10 V programmable Josephson array. Metrologia 50, 612–622 (2013)

    Article  ADS  Google Scholar 

  61. Y. Amagai, M. Maruyama, H. Fujiki, Low-frequency characterization in thermal converters using ac-programmable Josephson voltage standard system. IEEE Trans. Inst. Meas. 62(6), 1621–1626 (2013). https://doi.org/10.1109/tim.2013.2245182

    Article  Google Scholar 

  62. M. Schubert, M. Starkloff, J. Lee, R. Behr, L. Palafox, A. Wintermeier, A.C. Boeck, P.M. Fleischmann, T. May, An ac Josephson voltage standard up to the kilohertz range tested in a calibration laboratory. IEEE Trans. Instrum. Meas. 64(6), 1620–1626 (2015)

    Article  Google Scholar 

  63. S.-F. Chen, Y. Amagai, M. Maruyama, N. Kaneko, Uncertainty evaluation of a 10 V rms sampling measurement system using the ac programmable Josephson voltage standard. IEEE Trans. Instrum. Meas. 64(12), 3308–3314 (2015). https://doi.org/10.1109/tim.2015.2450355

    Article  Google Scholar 

  64. L. Palafox, G. Ramm, R. Behr, W.G.K. Ihlenfeld, H. Moser, Primary ac power standard based on programmable Josephson junction arrays. IEEE Trans. Instrum. Meas. 56(2), 534–537 (2007)

    Article  Google Scholar 

  65. B.C. Waltrip, B. Gong, T.L. Nelson, Y. Wang, C.J. Burroughs, A. Rüfenacht, S.P. Benz, P.D. Dresselhaus, AC power standard using a programmable Josephson voltage standard. IEEE Trans. Inst. Meas. 58, 1041–1048 (2009)

    Article  Google Scholar 

  66. B. Baek, P.D. Dresselhaus, S.P. Benz, Co-sputtered Amorphous NbxSi1-x barriers for Josephson-junction circuits. IEEE Trans. Appl. Supercond. 16(4), 1966–1970 (2006)

    Article  ADS  Google Scholar 

  67. M.M. Elsbury, P.D. Dresselhaus, N.F. Bergren, C.J. Burroughs, S.P. Benz, Z.B. Popović, Broadband lumped-element integrated N-way power dividers for voltage standards. IEEE Trans. Microw. Theory Tech. 57(8), 2055–2063 (2009). https://doi.org/10.1109/tmtt.2009.2025464

    Article  ADS  Google Scholar 

  68. P.D. Dresselhaus, M.M. Elsbury, D. Olaya, C.J. Burroughs, S.P. Benz, 10 volt programmable Josephson voltage standard circuits using NbSi-barrier junctions. IEEE Trans. Appl. Supercond. 21(3), 693–696 (2011)

    Article  ADS  Google Scholar 

  69. P.D. Dresselhaus, M.M. Elsbury, S.P. Benz, Tapered transmission lines with dissipative junctions. IEEE Trans. Appl. Supercond. 19(3), 981–986 (2009)

    Article  ADS  Google Scholar 

  70. H. Yamamori, S. Kohjiro, Fabrication of voltage standard circuits utilizing a serial–parallel power divider. IEEE Trans. Appl. Supercond. 26(8), 1400404-4 (2016). https://doi.org/10.1109/tasc.2016.2622619

    Article  Google Scholar 

  71. M. Elsbury, C.J. Burroughs, P.D. Dresselhaus, Z.B. Popović, S.P. Benz, Microwave packaging for voltage standard applications. IEEE Trans. Appl. Supercond. 19(3), 1012–1015 (2009)

    Article  ADS  Google Scholar 

  72. S.P. Benz, C.J. Burroughs, P.D. Dresselhaus, N.F. Bergren, T.E. Lipe, J.R. Kinard, Y.-H. Tang, An ac Josephson voltage standard for ac-dc transfer standard measurements. IEEE Trans. Inst. Meas. 56(2), 239–243 (2007)

    Article  Google Scholar 

  73. T.E. Lipe, J.R. Kinard, Y.-H. Tang, S.P. Benz, C.J. Burrroughs, P.D. Dresselhaus, Thermal voltage converter calibrations using a quantum ac standard. Metrologia 45, 275–280 (2008)

    Article  ADS  Google Scholar 

  74. R.P. Landim, S.P. Benz, P.D. Dresselhaus, C.J. Burroughs, Systematic-error signals in the ac Josephson voltage standard: measurement and reduction. IEEE Trans. Inst. Meas. 57(6), 1215–1220 (2008)

    Article  Google Scholar 

  75. P.S. Filipski, M. Boecker, S.P. Benz, C.J. Burroughs, Experimental determination of the voltage lead error in an ac Josephson voltage standard. IEEE Trans. Inst. Meas. 60(7), 2387–2392 (2011)

    Article  Google Scholar 

  76. H.E. van den Brom, E. Houtzager, Voltage lead corrections for a pulse-driven ac Josephson voltage standard. Meas. Sci. Technol. 23, 124007 (2012)

    Article  ADS  Google Scholar 

  77. S.P. Benz, C.J. Burroughs, P.D. Dresselhaus, Low harmonic distortion in a Josephson arbitrary waveform synthesizer. Appl. Phys. Lett. 77(7), 1014–1016 (2000)

    Article  ADS  Google Scholar 

  78. S.P. Benz, P.D. Dresselhaus, C.J. Burroughs, N.F. Bergren, Precision measurements using a 300 mV Josephson arbitrary waveform synthesizer. IEEE Trans. Appl. Supercond. 17(2), 864–869 (2007)

    Article  ADS  Google Scholar 

  79. R.C. Toonen, S.P. Benz, Nonlinear behavior of electronic components characterized with precision multitones from a Josephson arbitrary waveform synthesizer. IEEE Trans. Appl. Supercond. 19(3), 715–718 (2009)

    Article  ADS  Google Scholar 

  80. B.D. Inglis, 1992 Standards for ac–dc transfer. Metrologia 29(2), 191–199 (1999)

    Article  ADS  Google Scholar 

  81. C.J. Burroughs, P.D. Dresselhaus, S.P. Benz, Operating margin measurements for an ac Josephson voltage standard, in Session 7e: DC Voltage of the CD Proceedings of the National Conference of Standards Laboratories, NCSL, Tampa Bay, Florida, 17–21 Aug 2003

    Google Scholar 

  82. C.J. Burroughs, S.P. Benz, P.D. Dresselhaus, Y. Chong, Flat-Spot Measurements for an AC Josephson Voltage Standard, in 2004 Conference on Precision Electromagnetic Measurements Digest, London, England, pp. 10–11, 27 June–2 July 2004

    Google Scholar 

  83. E. Houtzager, H.E. van den Brom, D. van Woerkom, Automatic tuning of the pulse-driven ac Josephson voltage standard, in 27th Conference on Precision Electromagnetic Measurements (CPEM 2010) Digest, presented 13–18 June 2010, Daejeon, Korea, pp. 185–186

    Google Scholar 

  84. N.E. Flowers-Jacobs, S.B. Waltman, A.E. Fox, P.D. Dresselhaus, S.P. Benz, Josephson arbitrary waveform synthesizer with two layers of Wilkinson dividers and a FIR filter. IEEE Trans. Appl. Supercond. 26(6), 1400207-7 (2016). https://doi.org/10.1109/tasc.2016.2582800

    Google Scholar 

  85. K. Zhou, J. Qu, S.P. Benz, Zero-compensation method and reduced inductive voltage error for the ac Josephson voltage standard. IEEE Trans. Appl. Supercond. 25(5), 1400806-6 (2015). https://doi.org/10.1109/tasc.2015.2470684

    Article  Google Scholar 

  86. J.A. Brevik, N.E. Flowers-Jacobs, A.E. Fox, E.B. Golden, P.D. Dresselhaus, S.P. Benz, Josephson arbitrary waveform synthesis with multi-level pulse biasing. IEEE Trans. Appl. Supercond. 27(3), 1301707-7 (2017). https://doi.org/10.1109/tasc.2017.2662708

    Article  Google Scholar 

  87. L. Palafox, R. Behr, O. Kieler, J. Lee, I. Budovsky, S. Bauer, T. Hagen, First metrological applications of the PTB 1 V Josephson arbitrary waveform synthesizer, in Conference on Precision Electromagnetic Measurements (CPEM 2016) Digest, presented 10–15 July 2016, Ottawa, Canada. https://doi.org/10.1109/cpem.2016.7540602

  88. I. Budovsky, L. Palafox, First metrological applications of the PTB 1 V Josephson arbitrary waveform synthesizer, in Conference on Precision Electromagnetic Measurements (CPEM 2016) Digest, presented 10–15 July 2016, Ottawa, Canada. https://doi.org/10.1109/cpem.2016.7540632

  89. J. Underwood, Uncertainty analysis for ac–dc difference measurements with the AC Josephson voltage standard. Metrologia 56(1), 1681 (2019). https://doi.org/10.1088/1681-7575/aaf5e5

    Article  Google Scholar 

  90. A. Rüfenacht, N.E. Flowers-Jacobs, A.E. Fox, C.J. Burroughs, P.D. Dresselhaus, S.P. Benz, Direct comparison of a pulse-driven Josephson arbitrary waveform synthesizer and a programmable Josephson voltage standard at 1 volt, in 30th Conference on Precision Electromagnetic Measurements (CPEM 2016) Digest, 10–15 July 2016, Ottawa, Canada, pp. 1–2. https://doi.org/10.1109/cpem.2016.7540603

  91. Visualization of Quantum State Flat Spots for the Programmable Josephson Voltage Standard (PJVS) and Josephson Arbitrary Waveform Synthesizer (JAWS), NIST. https://www.nist.gov/pml/quantum-electromagnetics/superconductive-electronics/quantum-state-flat-spots

  92. S. Bauer, R. Behr, T. Hagen, O. Kieler, J. Lee, L. Palafox, J. Schurr, A novel two-terminal-pair pulse-driven Josephson impedance bridge linking a 10 nF capacitance standard to the quantized Hall resistance. Metrologia 54(2), 152–160 (2017)

    Article  ADS  Google Scholar 

  93. W.L. Tew, S.P. Benz, P.D. Dresselhaus, H. Rogalla, D.R. White, J.R. Labenski, Recent Progress in noise thermometry at 505 K and 693 K using quantized voltage noise ratio spectra, in Proceedings of TEMPMEKO & ISHM 2010, 31 May–4 June 2010, Portorož, Slovenia, Joint International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science, International Journal of Thermophysics, vol. 31, no. 8, pp. 1719–1738, Sept 2010. https://doi.org/10.1007/s10765-010-0830-9

    Article  ADS  Google Scholar 

  94. S.P. Benz, P.D. Dresselhaus, C.J. Burroughs, Multitone waveform synthesis with a quantum voltage noise source. IEEE Trans. Appl. Supercond. 21(3), 681–686 (2011)

    Article  ADS  Google Scholar 

  95. M. Maezawa, T. Yamada, C. Urano, Improved design of integrated quantum voltage noise source. IEEE Trans. Appl. Supercond. 26(3), 1800504-6 (2016)

    Google Scholar 

  96. K.J. Coakley, J. Qu, Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry. Metrologia 54(2), 204–217 (2017) https://doi-org.nist.idm.oclc.org/10.1088/1681-7575/aa5d21

    Article  ADS  Google Scholar 

  97. J. Qu et al., An improved electronic determination of the Boltzmann constant by Johnson noise thermometry. Metrologia 54(4), 549–558 (2017). https://doi.org/10.1088/1681-7575/aa781e

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel P. Benz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benz, S.P. (2019). Josephson Junctions for Metrology Applications. In: Tafuri, F. (eds) Fundamentals and Frontiers of the Josephson Effect. Springer Series in Materials Science, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-030-20726-7_15

Download citation

Publish with us

Policies and ethics