Skip to main content

A Degradation Model Based on the Wiener Process Assuming Non-Normal Distributed Measurement Errors

  • Chapter
  • First Online:
Statistical Quality Technologies

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 640 Accesses

Abstract

For highly reliable products whose failure times are scarce, traditional methods for lifetime time analysis are no longer effective and efficient. Instead, degradation data analysis that investigates degradation processes of products becomes a useful tool in evaluating reliability. It focuses on the inherent randomness of products, and investigates the lifetime properties by developing degradation models and extrapolating to lifetime variables. But degradation data are often subject to measurement errors, which may have tails and better be described by non-normal distribution. In this chapter, we consider a Wiener-based model and assume logistic distributed measurement errors. For parameter estimation of the model, the Monte-Carlo expectation-maximization method is adopted together with the Gibbs sampling. Also an efficient algorithm is proposed for a quick approximation of maximum likelihood value. Moreover the remaining useful lifetime is estimated and discussed. From the simulation results, we find that the proposed model is more robust than the model based on the Wiener process assuming normal-distributed errors. Finally, an example is given to illustrate the application of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This famous model, based on the Wiener process assuming normal distributed measurement errors, has an explicitly expressed likelihood function [7].

References

  1. Wang, X. (2010). Wiener processes with random effects for degradation data. Journal of Multivariate Analysis, 101,(2), 340–351.

    Article  MathSciNet  Google Scholar 

  2. Hong, Y. L., Duan, Y. Y., Meeker, W. Q., Stanley, D. L., & Gu, X. H. (2015). Statistical methods for degradation data with dynamic covariates information and an application to outdoor weathering data. Technometrics, 57(2), 180–193.

    Article  MathSciNet  Google Scholar 

  3. Xu, Z. B., Hong, Y. L., & Jin, R. (2016). Nonlinear general path models for degradation data with dynamic covariates. Applied Stochastic Models in Business and Industry, 32(2), 153–167.

    Article  MathSciNet  Google Scholar 

  4. Sari, J. K., Newby, M. J., Brombacher, A. C., & Tang, L. C. (2009). Bivariate constant stress degradation model: Led lighting system reliability estimation with two-stage modelling. Quality and Reliability Engineering International, 25(8), 1067–1084.

    Article  Google Scholar 

  5. Meeker, W. Q., & Escobar, L. (1998). Statistical methods for reliability data. New York: Wiley.

    MATH  Google Scholar 

  6. Ye, Z. S., & Xie, M. (2015). Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry, 31(1), 16–32.

    Article  MathSciNet  Google Scholar 

  7. Whitmore, G. A., & Schenkelberg, F. (1997). Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Analysis, 3(1), 27.

    Article  Google Scholar 

  8. Hu, C. H., Lee, M. Y., & Tang, J. (2015). Optimum step-stress accelerated degradation test for Wiener degradation process under constraints. European Journal of Operational Research, 241(2), 412–421.

    Article  MathSciNet  Google Scholar 

  9. Zhai, Q. Q., Ye, Z. S. (2017). RUL prediction of deteriorating products using an adaptive Wiener process model. IEEE Transactions on Industrial Informatics, 13(6), 2911–2921.

    Article  Google Scholar 

  10. Wang, X. L., Jiang, P., Guo, B., & Cheng, Z. J. (2014). Real-time reliability evaluation with a general Wiener process-based degradation model. Quality and Reliability Engineering International, 30(2), 205–220.

    Article  Google Scholar 

  11. Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Analysis, 1(3), 307–319.

    Article  Google Scholar 

  12. Ye, Z. S., Wang, Y., Tsui, K. L., & Pecht, M. (2013). Degradation data analysis using Wiener processes with measurement errors. IEEE Transactions on Reliability, 62(4), 772–780.

    Article  Google Scholar 

  13. Tang, S. J., Yu, C. Q., Wang, X., Guo, X. S., & Si, X. S. (2014). Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error. Energies, 7(2), 520–547.

    Article  Google Scholar 

  14. Li, J. X., Wang, Z. H., Zhang, Y. B., Fu, H. M., Liu, C. R., & Krishnaswamy, S. (2017). Degradation data analysis based on a generalized Wiener process subject to measurement error. Mechanical Systems and Signal Processing, 94, 57–72.

    Article  Google Scholar 

  15. Zhai, Q. Q., & Ye, Z. S. (2017). Robust degradation analysis with non-Gaussian measurement errors. IEEE Transactions on Instrumentation and Measurement, 66(11), 2803–2812.

    Article  Google Scholar 

  16. Saha, B., & Goebel, K. (2007). Battery data set. NASA Ames Prognostics Data Repository.

    Google Scholar 

  17. Friedman, J. H. (2016). Robust location and scale estimation with censored data. Available via http://poloclub.gatech.edu/idea2016/slides/keynote-friedman-kdd-idea16.pdf.

  18. Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 85(411), 699–704.

    Article  Google Scholar 

  19. Ripley, B. D. (1987). Stochastic simulation. New York: Wiley.

    Book  Google Scholar 

  20. Son, K. L., Fouladirad, M., & Barros, A. (2016). Remaining useful lifetime estimation and noisy gamma deterioration process. Reliability Engineering and System Safety, 149, 76–87.

    Article  Google Scholar 

  21. Celeux, G., & Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly, 2, 73–82.

    Google Scholar 

  22. Celeux, G., Chauveau, D., & Diebolt, J. (1996). Stochastic versions of the EM algorithm: An experimental study in the mixture case. Journal of Statistical Computation and Simulation, 55(4), 287–314.

    Article  Google Scholar 

  23. Bedair, K., Hong, Y. L., Li, J., & Al-Khalidi, H. R. (2016). Multivariate frailty models for multi-type recurrent event data and its application to cancer prevention trial. Computational Statistics and Data Analysis, 101, 161–173.

    Article  MathSciNet  Google Scholar 

  24. Louis, A. T. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society: Series B: Methodological, 44(2), 226–233.

    MathSciNet  MATH  Google Scholar 

  25. Zhang, J. X., Hu, C. H., Si, X. S., Zhou, Z. J., & Du, D. B. (2014). Remaining useful life estimation for systems with time-varying mean and variance of degradation processes. Quality and Reliability Engineering International, 30(6), 829–841.

    Article  Google Scholar 

  26. Dubarry, M., & Liaw, B. Y. (2009). Identify capacity fading mechanism in a commercial LiFePO4 cell. Journal of Power Sources, 194(1), 541–549.

    Article  Google Scholar 

Download references

Acknowledgements

This work was published on Quality and Reliability Engineering International. This work was supported by the National Natural Science Foundation of China [Grant Number 71401146]; the MOE (Ministry of Education) Key Laboratory of Econometrics; and Fujian Key Laboratory of Statistical Sciences, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shen .

Editor information

Editors and Affiliations

Appendices

Appendix 1

This appendix presents the technical details for the inference in Sect. 3.4. Recall the parameter θ = (μ, σ, s)′. The first and second partial derivatives of the loglikelihood function in (8) with respect to θ are as follows. Let κ l,i = x l,i − x l,i−1 − μλ l,i.

$$\displaystyle \begin{aligned} \begin{array}{rcl} \frac{\partial\ell}{\partial \mu}&\displaystyle =&\displaystyle \frac{1}{\sigma^2}\sum_{l=1}^m\sum_{i=1}^{n_l}\kappa_{l,i}\\ \frac{\partial\ell}{\partial \sigma}&\displaystyle =&\displaystyle -\frac{1}{\sigma}\sum_{l=1}^m n_l+\frac{1}{\sigma^3}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{\kappa_{l,i}^2}{\lambda_{l,i}}\\ \frac{\partial\ell}{\partial s}&\displaystyle =&\displaystyle \frac{1}{s^2}\sum_{l=1}^m\sum_{i=1}^{n_l}(y_{l,i}-x_{l,i})-\frac{1}{s}\sum_{i=1}^m n_l-\frac{2}{s^2}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{y_{l,i}-x_{l,i}}{1+e^{(y_{l,i}-x_{l,i})/s}}\\ \frac{\partial^2\ell}{\partial\mu^2}&\displaystyle =&\displaystyle -\frac{1}{\sigma^2}\sum_{l=1}^{m}\varLambda_{l,n_l}\\ \frac{\partial^2\ell}{\partial\sigma^2}&\displaystyle =&\displaystyle \frac{1}{\sigma^2}\sum_{l=1}^m n_l-\frac{3}{\sigma^4}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{\kappa_{l,i}^2}{\lambda_{l,i}}\\ \frac{\partial^2\ell}{\partial s^2}&\displaystyle =&\displaystyle -\frac{2}{s^3}\sum_{l=1}^m\sum_{i=1}^{n_l}(y_{l,i}-x_{l,i})+\frac{1}{s^2}\sum_{i=1}^m n_l+\frac{4}{s^3}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{y_{l,i}-x_{l,i}}{1+e^{(y_{l,i}-x_{l,i})/s}}\\ &\displaystyle &\displaystyle -\frac{2}{s^4}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{(y_{l,i}-x_{l,i})^2e^{(y_{l,i}-x_{l,i})/s}}{[1+e^{(y_{l,i}-x_{l,i})/s}]^2}\\ \frac{\partial^2\ell}{\partial\mu\partial\sigma}&\displaystyle =&\displaystyle -\frac{2}{\sigma^3}\sum_{l=1}^m\sum_{i=1}^{n_l}\kappa_{l,i}\\ \frac{\partial^2\ell}{\partial\mu\partial s}&\displaystyle =&\displaystyle \frac{\partial^2\ell}{\partial\sigma\partial s}=0. \end{array} \end{aligned} $$

If the time transformation function Λ(t) contains an extra parameters b, i.e. Λ(t) = Λ(t;b), we also need the first and second partial derivatives of the loglikelihood function (8) with respect to b.

$$\displaystyle \begin{aligned} \begin{array}{rcl} \frac{\partial\ell}{\partial b}&\displaystyle =&\displaystyle -\frac{1}{2}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{1}{\lambda_{l,i}}\frac{\partial\lambda_{l,i}}{\partial b}+\frac{1}{\sigma^2}\sum_{l=1}^m\sum_{i=1}^{n_l}\left(\frac{\kappa_{l,i}\mu}{\lambda_{l,i}}+\frac{\kappa_{l,i}^2}{2\lambda^2_{l,i}}\right) \frac{\partial\lambda_{l,i}}{\partial b}\\ \frac{\partial^2\ell}{\partial b^2}&\displaystyle =&\displaystyle \frac{1}{2}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{1}{\lambda^2_{l,i}}\left(\frac{\partial\lambda_{l,i}}{\partial b}\right)^2-\frac{1}{2}\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{1}{\lambda_{l,i}}\frac{\partial^2\lambda_{l,i}}{\partial b^2}\\ &\displaystyle &\displaystyle +\frac{1}{\sigma^2}\sum_{l=1}^m\sum_{i=1}^{n_l}\left(\frac{\kappa_{l,i}\mu}{\lambda_{l,i}}+\frac{\kappa_{l,i}^2}{2\lambda^2_{l,i}}\right) \frac{\partial^2\lambda_{l,i}}{\partial b^2}\\ &\displaystyle &\displaystyle -\frac{1}{\sigma^2}\sum_{l=1}^m\sum_{i=1}^{n_l}\left(\frac{\mu^2}{\lambda_{l,i}}+\frac{2\kappa_{l,i}\mu}{\lambda_{l,i}^2}+ \frac{\kappa_{l,i}^2}{\lambda_{l,i}^3}\right)\left(\frac{\partial\lambda_{l,i}} {\partial b}\right)^2\\ \frac{\partial^2\ell}{\partial \mu\partial b}&\displaystyle =&\displaystyle -\sum_{l=1}^m\sum_{i=1}^{n_l}\frac{\mu}{\sigma^2}\frac{\partial \lambda_{l,i}}{\partial b}\\ \frac{\partial^2\ell}{\partial \sigma\partial b}&\displaystyle =&\displaystyle -\frac{2}{\sigma^3}\sum_{l=1}^m\sum_{i=1}^{n_l}\left(\frac{\kappa_{l,i}\mu}{\lambda_{l,i}}+\frac{\kappa_{l,i}^2}{2\lambda^2_{l,i}}\right)\frac{\partial \lambda_{l,i}}{\partial b}\\ \frac{\partial^2\ell}{\partial s\partial b}&\displaystyle =&\displaystyle 0. \end{array} \end{aligned} $$

Appendix 2

This appendix presents part of codes for Monte Carlo simulations. All codes were compiled based Matlab software, and the related files are available upon request.

 

 

 

 

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, Y., Shen, LJ., Xu, WT. (2019). A Degradation Model Based on the Wiener Process Assuming Non-Normal Distributed Measurement Errors. In: Lio, Y., Ng, H., Tsai, TR., Chen, DG. (eds) Statistical Quality Technologies. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-20709-0_13

Download citation

Publish with us

Policies and ethics