Skip to main content

Fundamental Concepts and Framework

  • Chapter
  • First Online:
Value Based and Intelligent Asset Management

Abstract

This chapter introduces those terms and concepts that we consider fundamental for the reader to understand the rest of the book. It provides a background and introduces a generalized framework providing relevant dimensions of value-based and intelligent asset management. Firstly, understanding the value that an asset can provide and how value-based asset management can be implemented is fundamental. Secondly, it is essential to understand that the realization of the value that an asset provides to an organization can be also done at a different indenture level to the one where asset operation and maintenance is managed. Indeed, understanding the systemic dimension of the problem is therefore a fundamental aspect too. Equally important is the emphasis that asset management places on an asset life cycle approach, to deal properly with many strategic decisions regarding investment and reinvestment in new capacity, extension of the useful life, assets health analysis, identification of possible major maintenance needs, etc. Thirdly, in a world subject to a sweeping digital transformation, we must also make use of better methods, skills and abilities that help us improve our levels of intelligence in management and allow us to take advantage of the data and information at our disposal to reach levels of unprecedented asset management. The last part of this Chapter is dedicated to present the generalized framework, to ease the understanding of these asset management dimensions, and to deal with each one of them in a proper manner for the long-term vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. British Standards Institute, PAS55:2008-1:2008. Specification for the optimized management of physical assets, 2008.

    Google Scholar 

  2. International Standards Organisation, ISO 55000:2014(E) Asset management—Overview, principles and terminology, 2014.

    Google Scholar 

  3. Liyanage, J. P., & Kumar, U. (2003). Towards a value-based view on operations and maintenance performance management. Journal of Quality in Maintenance Engineering, 9(4), 333–350.

    Article  Google Scholar 

  4. Amadi-Echendu, J., Willett, R., & Brown, K. (2010). What is engineering asset management? Definitions, concepts and scope of engineering asset management (pp. 3–16). London: Springer.

    Chapter  Google Scholar 

  5. El-Akruti, K., Dwight, R., & Zhang, T. (2013). The strategic role of engineering asset management. International Journal of Production Economics, 146(1), 227–239.

    Article  Google Scholar 

  6. Wang, J. Q., Chen, Z., & Parlikad, A. (2015). Designing performance measures for asset management systems in capital-intensive manufacturing: A case study. In 10th WCEAM proceedings, Tampere, Finland.

    Google Scholar 

  7. Srinivasan, R., & Parlikad, A. K. (2017). An approach to value-based infrastructure asset management. Infrastructure Asset Management, 4(3), 87–95.

    Article  Google Scholar 

  8. Roda, I., Parlikad, A. K., Macchi, M., & Garetti, M. (2016). A framework for implementing value-based approach in asset management. In Proceedings of the 10th World Congress on Engineering Asset Management (WCEAM 2015) (pp. 487–495). Springer, Cham.

    Google Scholar 

  9. Petchrompo, S., & Parlikad, A. K. (2018). Review of asset management literature on multi-asset systems. Reliability Engineering & System Safety, 181, 181–201.

    Article  Google Scholar 

  10. Nicolai R. P., & Dekker R. (2008). Optimal maintenance of multi-component systems: A review. In Complex System Maintenance Handbook, London, Springer

    Google Scholar 

  11. Olde Keizer, M. C. A., Teunter, R. H., Veldman, J., & Babai, M. Z. (2018). Condition-based maintenance for systems with economic dependence and load sharing. International Journal of Production Economics, 195, 319–327. https://doi.org/10.1016/j.ijpe.2017.10.030

    Article  Google Scholar 

  12. Rasmekomen, N., & Parlikad, A. K. (2013). Maintenance optimization for asset systems with dependent performance degradation. IEEE Transactions on Reliability, 62(2), 362–367.

    Article  Google Scholar 

  13. Wang, R., & Chen, N. (2016, December). A survey of condition-based maintenance modeling of multi-component systems. In 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (Vol. 2016, pp. 1664–1668). https://doi.org/10.1109/ieem.2016.7798160.

  14. Roda, I., & Macchi, M. (2018). A framework to embed asset management in production companies. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 232(4), 368–378.

    Google Scholar 

  15. Crespo Márquez, A., Moreu De Leõn, P., Sola Rosique, A., & Gõmez Fernández, J. F. (2016). Criticality analysis for maintenance purposes: A study for complex in-service engineering assets. Quality and Reliability Engineering International, 32, 519–533.

    Google Scholar 

  16. Adams, J., Srinivasan, R., Parlikad, A. K., González-Prida, V., & Crespo, A. M. (2016). Towards dynamic criticality-based maintenance strategy for industrial assets. IFAC-Papers, 49, 103–107.

    Article  Google Scholar 

  17. Xu, Y., Elgh, F., & Erkoyuncu, J. (2013). Cost Engineering for manufacturing: Current and future research. International Journal of Computer Integrated Manufacturing, 37–41.

    Google Scholar 

  18. Liang, Z., Parlikad, A. K. (2015). A condition-based maintenance model for as-sets with accelerated deterioration due to fault propagation. IEEE Transactions on Reliability.

    Google Scholar 

  19. Roda, I., & Macchi, M. (2019). Factory-level performance evaluation of buffered multi-state production systems. Journal of Manufacturing Systems, 50, 226–235.

    Article  Google Scholar 

  20. Badurdeen, F., Shuaib, M., & Liyanage, J. P. (2012). Risk modeling and analysis for sustainable asset management. In J. Mathew, L. Ma, A. Tan, M. Weijnen, & J. Lee (Eds.), Engineering asset management and infrastructure sustainability (pp. 61–75). London: Springer.

    Chapter  Google Scholar 

  21. Frost, C., Allen, D., Porter, J., & Bloodworth, P. (2001). Operational risk and resilience. Butterworth Heinemann.

    Google Scholar 

  22. Amadi-Echendu, J. (2004). Managing physical assets is a paradigm shift from maintenance. In Engineering Management Conference (pp. 1156–1160).

    Google Scholar 

  23. Wise, R., & Baumgartner, P. (1999). Go downstream: The new profit imperative in manufacturing. Harvard Business Review, 77(5), 133–141.

    Google Scholar 

  24. Pawar, K. S., Beltagui, A., & Riedel, J. C. K. H. (2009). The PSO triangle: Designing product, service and organization to create value. International Journal of Operations & Production Management, 29(5), 468–493.

    Article  Google Scholar 

  25. Mathieu, V. (2001). Service strategies within the manufacturing sector: Benefits, costs and partnership. International Journal of Service Industry Management, 12(5), 451–475.

    Article  Google Scholar 

  26. Gebauer, H., & Fleisch, E. (2007). An investigation of the relationship between behavioural processes, motivation, investments in the service business and service revenue. Industrial Marketing Management, 36(3), 337–348.

    Article  Google Scholar 

  27. Neely, A. (2009). Exploring the financial consequences of the servitization of manufacturing. Operations Management Research, 1(2), 103–118.

    Article  Google Scholar 

  28. Mont, O. K. (2002). Clarifying the concept of product-service system. Journal of Cleaner Production, 10(3), 237–245.

    Article  Google Scholar 

  29. Vandermerwe, S., & Rada, J. (1988). Servitization of business: Adding value by adding services. European Management Journal, 6(4), 314–324.

    Article  Google Scholar 

  30. Kindström, D. (2010). Towards a service-based business model-key aspects for future competitive advantage. European Management Journal, 28(6), 479–490.

    Article  Google Scholar 

  31. Meier, H., Roy, R., & Seliger, G. (2010). Industrial product-service systems. IPS2, CIRP Annals—Manufacturing Technology, 59(2), 607–627.

    Article  Google Scholar 

  32. Schuh, G., Klotzbach, C., & Gaus, F. (2008). Service provision as a sub-model of modern business models. Production Engineering: Research and Development, 2(1), 79–84.

    Article  Google Scholar 

  33. Gaiardelli, P., Resta, B., Martinez, V., Pinto, R., & Albores, P. (2014). A classification model for product-service offerings. Journal of Cleaner Production, 66, 507–519.

    Article  Google Scholar 

  34. IAM. (2008). The IAM competences framework (November).

    Google Scholar 

  35. Borek, A., et al. (2014). A risk based model for quantifying the impact of information quality. Computers in Industry, 65(2), 354–366.

    Article  Google Scholar 

  36. Petchrompo, S., & Parlikad, A. K. (2019). A review of asset management literature on multi-asset systems. Reliability Engineering and System Safety, 181, 181–201.

    Article  Google Scholar 

  37. Campos, J., Sharma, P., Gabiria, U. G., Jantunen, E., & Baglee, D. (2017). A big data analytical architecture for the asset management. Procedia CIRP, 64, 369–374.

    Article  Google Scholar 

  38. Ouertani, M., Parlikad, A., & McFarlane, D. (2008). Towards an approach to select an asset information management strategy. International Journal of Computer Science and Applications, 5(3), 25–44.

    Google Scholar 

  39. Moore, W. J., & Starr, A. G. (2006). An intelligent maintenance system for continuous cost-based prioritisation of maintenance activities. Computers in Industry, 57(6), 595–606.

    Article  Google Scholar 

  40. Kans, M., & Ingwald, A. (2008). Common database for cost-effective improvement of maintenance performance. International Journal of Production Economics, 113, 734–747.

    Article  Google Scholar 

  41. ISO 10303-1:1994. Automation systems and integration—Product data representation and exchange. Part 1: Overview and fundamental principles.

    Google Scholar 

  42. ISO 15926:2003. Industrial automation systems and integration—Integration of life-cycle data for process plants including oil and gas production facilities.

    Google Scholar 

  43. Kiritsis, D. (2011). Closed-loop PLM for intelligent products in the era of the Internet of things. Computer-Aided Design, 43(5), 479–501.

    Article  Google Scholar 

  44. Negri, E., Fumagalli, L., Garetti, M., & Tanca, L. (2016). Requirements and languages for the semantic representation of manufacturing systems. Computers in Industry, 81, 55–66.

    Article  Google Scholar 

  45. PAS 1192-3:2014. Specification for information management for the operational phase of assets using building information modelling (BIM).

    Google Scholar 

  46. Masood, T., Cuthbert, R., Parlikad, A. K., & McFarlane, D. C. (2013). Information futureproofing for large-scale infrastructure. In Proceedings of 3rd IET Asset Management Conference (6 pages), London, November 2013.

    Google Scholar 

  47. Woodall, P., Borek, A., & Parlikad, A. K. (2013). Data quality assessment: The hybrid approach. Information & Management, 50(7), 369–382.

    Article  Google Scholar 

  48. Ashton, Kevin. (2009). That ‘Internet of Things’ thing. RFiD Journal, 22(7), 97–114.

    Google Scholar 

  49. Sarma, S., Brock, D. L., & Ashton, K. (2000). The networked physical world. Auto-ID Center White Paper MIT-AUTOID-WH-001.

    Google Scholar 

  50. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things : A survey. Computer Networks, 54(15), 2787–2805.

    Google Scholar 

  51. Iera, A., Floerkemeier, C., Mitsugi, J., & Morabito, G. (2010). The Internet of things [Guest Editorial]. Wireless Communications, IEEE, 17(6), 8–9.

    Article  Google Scholar 

  52. Monostori, L., et al. (2016). Cyber-physical systems in manufacturing. CIRP Annals—Manufacturing Technology, 65, 621–641.

    Article  Google Scholar 

  53. Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Article  Google Scholar 

  54. Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical Engineering, 47, 145–156.

    Article  Google Scholar 

  55. Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP, 16, 3–8.

    Google Scholar 

  56. Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of Digital Twin in CPS-based production systems. Procedia Manufacturing, 11, 939–948.

    Article  Google Scholar 

  57. Davies, R., Coole, T., & Smith, A. (2017). Review of socio-technical considerations to ensure successful implementation of industry 4.0. Procedia Manufacturing, 11, 1288–1295.

    Article  Google Scholar 

  58. Penas, O., Plateaux, R., Patalano, S., & Hammadi, M. (2017). Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Computers in Industry, 86, 52–69.

    Article  Google Scholar 

  59. Liu, Y., & Xu, X. (2017). Industry 4.0 and cloud manufacturing: A comparative analysis. Journal of Manufacturing Science and Engineering, 139(3).

    Google Scholar 

  60. Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B, 34(2), 187–220.

    MathSciNet  MATH  Google Scholar 

  61. Cheng, S., Azarian, M. H., & Pecht, M. G. (2010). Sensor systems for prognostics and health management. Sensors, 10(6), 5774–5797.

    Article  Google Scholar 

  62. Pecht, M. G. (2008). Prognostics and health management of electronics. Wiley.

    Google Scholar 

  63. Haddad, G., Sandborn, P., & Pecht, M. G. (2012). An options approach for decision support of systems with prognostic capabilities. IEEE Transactions on Reliablity, 61(4), 872–883.

    Article  Google Scholar 

  64. Guillén, A. J., Crespo, A., Macchi, M., & Gómez, J. (2016). On the role of prognostics and health management in advanced maintenance systems. Production Planning and Control: The Management of Operations, 27(12), 991–1004.

    Article  Google Scholar 

  65. Dekker, R., & Scarf, P. A. (1998). On the impact of optimisation models in maintenance decision Making: The state of the art. Reliability Engineering and System Safety, 60, 111–119.

    Google Scholar 

  66. Li, Y., Zio, E., & Lin, Y. (2012). A multistate physics model of component degradation based on stochastic petri nets and simulation. IEEE Transactions on Reliability, 61(4), 921–931.

    Article  Google Scholar 

  67. NIST. IDEF Ø: 1993. Integration Definition for Function Modeling. FIPS Publication 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Crespo Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crespo Márquez, A., Macchi, M., Parlikad, A.K. (2020). Fundamental Concepts and Framework. In: Crespo Márquez, A., Macchi, M., Parlikad, A. (eds) Value Based and Intelligent Asset Management. Springer, Cham. https://doi.org/10.1007/978-3-030-20704-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20704-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20703-8

  • Online ISBN: 978-3-030-20704-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics