Skip to main content

Accurate Determination of the Size and Mass of Polymers, Nanoparticles, and Fine Bubbles in Water

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

Interaction of electromagnetic radiation (reflection, scattering, and transmission) with turbid media is used routinely to investigate their internal microstructure for a long time (Debye 1967; Kerker 1969; Kokhanovsky 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bantle S, Schmidt M, Burchard W (1982) Simultaneous static and dynamic light scattering. Macromolecules 15:1604

    Article  ADS  Google Scholar 

  • Bender TM, Lewis RJ, Pecora R (1986) Absolute Rayleigh ratios of four solvents at 488 nm. Macromolecules 19:244–245

    Article  ADS  Google Scholar 

  • Berne BJ, Pecora R (1976) Dynamic light scattering with applications to chemistry, biology, and physics. Wiley, New York [Reprinted by Dover (2001) Mineola, New York]

    Google Scholar 

  • Berry GC (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J Chem Phys 44:4550–4564

    Article  ADS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge

    Google Scholar 

  • Brown W, Mortensen K (2000) Scattering in polymeric and colloidal systems. Gordon and Breach, Amsterdam

    Google Scholar 

  • Brown W, Nicolai T (1993) Dynamic light scattering, the method and some applications. Monographs on the physics and chemistry of materials. No. 49, Clarendon, Oxford

    Google Scholar 

  • Brown JC, Pusey PN, Goodwin JW, Ottewill RH (1975) Light scattering study of dynamic and time-averaged correlations in dispersions of charged particles. J Phys A Math Gen 8:664–682

    Article  ADS  Google Scholar 

  • Burchard W (1979) Quasi-elastic light scattering: separability of effects of polydispersity and internal modes of motion. Polymer 20:577–581

    Article  Google Scholar 

  • Burchard W, Patterson GD (1983) Light scattering from polymers. Advances in polymer science. Springer, Berlin

    Google Scholar 

  • Chu B (1972) Laser light scattering, 1st edn. Academic Press, Boston

    Google Scholar 

  • Chu B (1991) Laser light scattering: basic principles and practice, 2nd edn. Academic Press, Boston [Reprinted by Dover (2007) Mineola, New York]

    Google Scholar 

  • Cussler EL (1997) Diffusion. Cambridge University Press

    Google Scholar 

  • Debye PJW (1967) Molecular forces. In: Chu B (ed). Wiley, New York

    Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Ehara K, Mulholland GW, Hagwood RC (2000) Determination of arbitrary moments of aerosol size distributions from measurements with a differential mobility analyzer. Aerosol Sci Technol 32:434–452

    Article  ADS  Google Scholar 

  • Ehara K, Takahata K, Koike M (2006a) Absolute mass and size measurement of monodisperse particles using a modified Millikan’s method: Part I—Theoretical framework of the electro-gravitational aerosol balance. Aerosol Sci Technol 40:514–520

    Article  ADS  Google Scholar 

  • Ehara K, Takahata K, Koike M (2006) Absolute mass and size measurement of monodisperse particles using a modified Millikan’s method: Part II—Application of electro-gravitational aerosol balance to polystyrene latex particles of 100 nm to 1 um in average diameter. Aerosol Sci Technol 40:521–535

    Article  ADS  Google Scholar 

  • Einstein A (1926) Investigations on the theory of the Brownian movement. In: Fürth R (ed). Methuen, London [Reprinted by Dover (1956) Mineola, New York)]

    Google Scholar 

  • Finnigan JA, Jacobs DJ (1970) Light scattering from benzene, toluene, carbon disulphide and carbon tetrachloride. Chem Phys Lett 6(3):141–143

    Article  ADS  Google Scholar 

  • Flory PJ (1966) Principles of polymer chemistry. Cornel University Press, Ithaca, New York

    Google Scholar 

  • Fujita H (1990) Polymer solutions. Elsevier, Amsterdam

    Google Scholar 

  • Gapinski J, Patkowski A, Banchio AJ, Holmqvist P, Meier G, Lettinga MP, Nägele G (2007) Collective diffusion in charge-stabilized suspensions: concentration and salt effects. J Chem Phys 126:104905

    Article  ADS  Google Scholar 

  • Glatter O (1982) Small angle X-ray scattering. Academic Press, Boston

    Google Scholar 

  • Glatter O (2018) Scattering methods and their application in colloid and interface science. Elsevier, Amsterdam

    Google Scholar 

  • Hain N, Wesner D, Druzhinin SI, Schönherr H (2016) Surface nanobubbles studied by time-resolved fluorescence microscopy methods combined with AFM: the impact of surface treatment on nanobubble nucleation. Langmuir 32:11155–11163

    Article  Google Scholar 

  • Han CC, Akcasu AZ (2011) Scattering and dynamics of polymers, seeking order in disordered systems. Wiley, Singapore

    Book  Google Scholar 

  • Hara M (2000) Light scattering from Ionomer solution. In: Brown W, Mortensen K (eds) Scattering in polymeric and colloidal systems. Gordon and Breach, Amsterdam

    Google Scholar 

  • Hergert W, Wriedt T (2012) The Mie theory: basics and applications. Springer series in optical sciences, Springer, Berlin

    Book  Google Scholar 

  • Huglin MB (1972) Light scattering from polymer solutions. Academic Press, Boston

    Google Scholar 

  • Hulst HC (1957) Light scattering by small particles. Wiley, New York [Reprinted by Dover (1981)]

    Google Scholar 

  • ISO 13321 (1996) Particle size analysis—photon correlation spectroscopy. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 19430 (2017) Particle size analysis—particle tracking analysis (PTA) method. International Organization for Standardization, Geneva

    Google Scholar 

  • Iso GUM (1993) Guide to the expression of uncertainty in measurement. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 3666 (1998) Viscosity of water. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 22412 (2008) particle size analysis—dynamic light scattering (DLS). International Organization for Standardization, Geneva

    Google Scholar 

  • ISO 22412 (2017) Particle size analysis—dynamic light scattering (DLS). International Organization for Standardization, Geneva

    Google Scholar 

  • Kaler EW, Bennett KE, Davis HT, Scriven LE (1983) Toward understanding microemulsion microstructure: a small-angle x-ray scattering study. J Chem Phys 79:5673–5684

    Article  ADS  Google Scholar 

  • Kato H, Takahashi K, Saito T, Kinugasa S (2008) Characterization of nanoparticles in an aqueous solution with bound water molecules using pulsed field gradient nuclear magnetic resonance spectroscopy. Chem Phys Lett 463:150–151

    Article  ADS  Google Scholar 

  • Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New York

    Google Scholar 

  • Kinning DJ, Thomas EL (1984) Hard-sphere interactions between spherical domains in diblock copolymers. Macromolecules 17:1712–1718

    Article  ADS  Google Scholar 

  • Ko HC, Hsu WH, Yang CW, Fang CK, Lu YH, Hwang IS (2016) High-resolution characterization of preferential gas adsorption at the graphene–water interface. Langmuir 32:11164–11171

    Article  Google Scholar 

  • Kokhanovsky AA (2006) Cloud optics. Springer, Dordrecht

    Book  Google Scholar 

  • Kratochvil P (1987) Classical light scattering from polymer solutions. Polymer science library, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Lamb H (1932) Hydrodynamics. Cambridge University Press

    Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    Article  Google Scholar 

  • Mishchenko MI, Hovenier JW, Travis LD (2000) Light scattering by nonspherical particles. Academic Press, San Diego

    Google Scholar 

  • Mohr PJ, Taylor BN (2000) CODATA recommended values of the fundamental physical constants: 1998. Rev Mod Phys 72:351–495

    Article  ADS  Google Scholar 

  • Moreels E, Ceuninck WD, Finsy R (1987) Measurement of the Rayleigh ratio of some pure liquids at several laser light wavelengths. J Chem Phys 86(2):618–623

    Article  ADS  Google Scholar 

  • Mortensen K, Pedersen JS (1993) Hard-sphere interactions between spherical domains in diblock copolymers. Macromolecules 26:805–812

    Article  ADS  Google Scholar 

  • Nose T, Chu B (2012) Light scattering. In: Matyjaszewski K, Moller M (eds) Polymer science: a comprehensive reference, vol 2. Elsevier, Amsterdam, pp 301–329

    Chapter  Google Scholar 

  • Pecora R (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Springer, Berlin

    Book  Google Scholar 

  • Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110:1–13

    Article  ADS  MathSciNet  Google Scholar 

  • Pike ER, Abbis JB (1997) Light scattering and photon correlation spectroscopy. Nato science partnership subseries, vol 3. Springer, Berlin

    Google Scholar 

  • Plebanski T (1980) Section: viscosity. In Marsh KN (ed) Recommended reference materials for realization of physicochemical properties. Pure Appl Chem 52:2393–2404

    Google Scholar 

  • Provencher SW (1972) Makromol Chem 180:201–209

    Article  Google Scholar 

  • Provencher SW (1982) Phys Commun 27:213–227

    Article  ADS  Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Sec. 13. Cambridge University Press, Cambridge

    Google Scholar 

  • Saito K (2015) Development of fundamental certification systems for the fine bubble industrialization. J Soc Instr Contr Eng 54:752–755

    Google Scholar 

  • Schaefer DW, Berne BJ (1974) Dynamics of charged macromolecules in solution. Phys Rev Lett 32:1110

    Article  ADS  Google Scholar 

  • Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin

    Google Scholar 

  • Schmidt M, Burchard W, Ford NC (1978) Quasielastic light scattering: an experimental study of polydispersity. Macromol 11:452–454

    Article  ADS  Google Scholar 

  • Schwab M, Stühn B (1997) Asymmetric diblock copolymers-phase behaviour and kinetics of structure formation. Colloid Polym Sci 275:341–351

    Article  Google Scholar 

  • Shen S, Ni Y, Qian NJ, Liu Z, Shi C, An J, Wang L, Iwasaki S, Ishikawa J, Hong FJ, Suh HS, Labot J, Chartier A, Chartier JM (2001) Metrologia 38:181–186

    Article  ADS  Google Scholar 

  • Sonoda A (2017) Measurement of ultra fine bubble using laser diffraction method. J Soc Powder Technol Jpn 54:590–595

    Article  Google Scholar 

  • Sumoto T, Maeda H, Ogawa T, Akasaka T (2016) Concentration evaluation by quantitative laser diffraction method (qLD). J Soc Powder Technol Jpn 53:306–309

    Article  Google Scholar 

  • Takahashi K, Kato H, Saito T, Matsuyama S, Kinugasa S (2008) Precise measurement of the size of nanoparticles by dynamic light scattering with the uncertainty analysis. Part Part Syst Charact 25:31–38

    Google Scholar 

  • Takahashi K, Kato H, Kinugasa S (2011) Development of a standard method for nanoparticle sizing by using the angular dependence of dynamic light scattering. Anal Sci 27:751–756

    Article  Google Scholar 

  • Takahashi K, Takahata K, Misumi I, Sugawara K, Gonda S, Ehara K (2014) Recent activity of international comparison for nanoparticle size measurement. Proc SPIE 9232:92320L

    Article  ADS  Google Scholar 

  • Takahashi K, Ohuchi S, Saito K, Hirasawa M, Sakurai H (2018) Simultaneous determination of the size and concentration of fine bubbles in water by laser-light scattering. Appl Opt 52(2):225–229

    Article  ADS  Google Scholar 

  • Takahata K, Ehara K (2006) Accurate particle size measurements for development of particle size standards in the range of 30 to 100 nm. In: Abst. 7th international aerosol conference, p 395

    Google Scholar 

  • Tata VBR, Mohanty PS, Yamanaka J, Kawakami T (2006) Dynamic light scattering studies in silica/ethylene glycol charged colloidal system. Mol Simul 30:153–158

    Article  Google Scholar 

  • Teraoka I (2002) Polymer solutions. Wiley, New York

    Book  Google Scholar 

  • Thennadil SV, Garcia-Rubio LH (2007) Interpretation of light scattering spectra of dispersions—a hybrid approach to account for interparticle interactions. Part Part Syst Charact 24:402–410

    Article  Google Scholar 

  • Totoki S, Yamamoto G, Tsumoto K, Uchiyama S, Fukui K (2015) Quantitative laser diffraction method for the assessment of measure protein subvisible particles. J Pharm Sci 104:618–626

    Article  Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier Publishing, New York

    Google Scholar 

  • Wenzel M, Burchard W, Schätzel K (1986) Dynamic light scattering from semidilute cellulose-tri-carbanilate solutions. Polymer 27:195–201

    Article  Google Scholar 

  • Xue JZ, Wu XL, Pine DJ, Chaikin PM (1992) Hydrodynamic interactions in hard-sphere suspensions. Phys Rev A 45:989–992

    Article  ADS  Google Scholar 

  • Zimm BH (1948) Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions. J Chem Phys 16:1099–1116

    Article  ADS  Google Scholar 

  • Zimm BH (1954) Theory of light scattering and refractive index of solutions of large colloidal particles. J Phys Chem 58:644–648

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledge the collaboration of Dr. Keizo Saito (formerly of the Fine Bubble Industries Association, and Tsukasa Sokken Co., Ltd, Tokyo, Japan) and Ms. Seika Ohuchi (National Institute of Technology and Evaluation, Tokyo, Japan) for providing samples and valuable advice in regard to the current work.

The thanks are also due to Dr. Shinichi Kinugasa, Dr. Kensei Ehara, and Dr. Hiromu Sakurai (National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan) for helpful support and discussions.

Finally, I would like to express my gratitude to Dr. Alexander Kokhanovsky for giving me the opportunity to write this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayori Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, K. (2019). Accurate Determination of the Size and Mass of Polymers, Nanoparticles, and Fine Bubbles in Water. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-030-20587-4_4

Download citation

Publish with us

Policies and ethics