Skip to main content

Investigating the Age of Blood Traces: How Close Are We to Finding the Holy Grail of Forensic Science?

  • Chapter
  • First Online:
Emerging Technologies for the Analysis of Forensic Traces

Abstract

Blood traces found at crime scenes often comprise pivotal information regarding the events and individuals associated with the crime. Nowadays, even minute amounts of blood allow retrieval of a whole host of such ‘profiling’ information: e.g. diet, life style, age, gender. However, establishing any forensic value of such traces necessitates a veritable connection to a crime. The age of a blood trace, i.e. the time of its deposition, is crucial in this effort. This far-reaching forensic implication as well as the lack of currently validated and accepted trace dating methods, render blood stain age estimation the holy grail of forensic science. In its pursuit, several methods which determine the time since deposition of blood traces by probing different aspects of the trace degradation process have been proposed and explored. The present chapter collates and discusses current research investigating some of these blood trace ageing methods and their practical application in three categories. The first category comprises techniques which require trace sampling and consume these samples in their entirety during the analysis process. Similarly, the techniques in the second category require sampling of the blood trace but leave the sample intact for further analysis. Lastly, the third group of methods requires neither sampling nor contact. This, in turn, allows in situ analysis of the trace in question. The following operational aspects pertaining to these three categories are discussed in more detail: (i) required sample preparation, (ii) practical implementation and (iii) necessary operational skills. These aspects largely determine the suitability for forensic practice. Technology maturity (i.e. practical applicability) is quantified using the Technology Readiness Levels (TRL) as defined by the NASA/Airspace systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson S, Howard B et al (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148(1):37–45

    Article  CAS  Google Scholar 

  2. Alrowaithi MA, McCallum NA et al (2014) A method for determining the age of a bloodstain. Forensic Sci Int 234:e30–e31

    Article  Google Scholar 

  3. Anderson SE, Hobbs GR et al (2011) Multivariate analysis for estimating the age of a bloodstain. J Forensic Sci 56(1):186–193

    Article  CAS  Google Scholar 

  4. Simard AM, DesGroseillers L et al (2012) Assessment of RNA stability for age determination of body fluid stains. J Can Soc Forensic Sci 45:179–194

    Article  CAS  Google Scholar 

  5. Qi B, Kong L et al (2013) Gender-related difference in bloodstain RNA ratio stored under uncontrolled room conditions for 28 days. J Forensic Leg Med 20(4):321–325

    Article  Google Scholar 

  6. Alshehhi S, McCallum NA et al (2017) Quantification of RNA degradation of blood-specific markers to indicate the age of bloodstains. Forensic Sci Int Genet Suppl Ser 6:e453–e455

    Article  Google Scholar 

  7. Mohammed AT, Khalil SR et al (2018) Validation of mRNA and microRNA profiling as tools in qPCR for estimation of the age of bloodstains. Life Sci J 15(6):1–7

    CAS  Google Scholar 

  8. Eaton GR, Eaton SS et al (2010) Quantitative EPR: a practitioners guide. Springer-Verlag

    Google Scholar 

  9. Miki T, Kai A et al (1987) Electron spin resonance of bloodstains and its application to the estimation of time after bleeding. Forensic Sci Int 35(2–3):149–158

    Article  CAS  Google Scholar 

  10. Sakurai H, Tsuchiya K et al (1989) Dating of human blood by electron spin resonance spectroscopy. Naturwissenschaften 76(1):24–25

    Article  CAS  Google Scholar 

  11. Andrasko J (1997) The estimation of age of bloodstains by HPLC analysis. J Forensic Sci 42(4):601–607

    Article  CAS  Google Scholar 

  12. Inoue H, Takabe F et al (1992) A new marker for estimation of bloodstain age by high performance liquid chromatography. Forensic Sci Int 57(1):17–27

    Article  CAS  Google Scholar 

  13. Arany S, Ohtani S (2011) Age estimation of bloodstains: a preliminary report based on aspartic acid racemization rate. Forensic Sci Int 212(1–3):e36–e39

    Article  CAS  Google Scholar 

  14. Ackermann K, Ballantyne KN et al (2010) Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction. Int J Legal Med 124(5):387–395

    Article  Google Scholar 

  15. Lech K, Liu F et al (2016) Evaluation of mRNA markers for estimating blood deposition time: towards alibi testing from human forensic stains with rhythmic biomarkers. Forensic Sci Int Genet 21:119–125

    Article  CAS  Google Scholar 

  16. Lech K, Liu F et al (2017) Investigation of metabolites for estimating blood deposition time. Int J Legal Med 132(1):25–32

    Article  Google Scholar 

  17. Doty KC, McLaughlin G et al (2016) A Raman, “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem 408(15):3993–4001

    Article  CAS  Google Scholar 

  18. Doty KC, Muro CK et al (2017) Predicting the time of the crime: bloodstain aging estimation for up to two years. Forensic Chem 5:1–7

    Article  CAS  Google Scholar 

  19. Bai P, Wang J et al (2017) Discrimination of human and nonhuman blood by Raman spectroscopy and partial least squares discriminant analysis. Anal Lett 50(2):379–388

    Article  CAS  Google Scholar 

  20. Strasser S, Zink A et al (2007) Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci Int 170(1):8–14

    Article  Google Scholar 

  21. Smijs T, Galli F et al (2016) Forensic potential of atomic force microscopy. Forensic Chem 2:93–104

    Article  CAS  Google Scholar 

  22. Thanakiatkrai P, Yaodam A et al (2013) Age estimation of bloodstains using smartphones and digital image analysis. Forensic Sci Int 233(1–3):288–297

    Article  Google Scholar 

  23. Shin J, Choi S et al (2017) Smart forensic phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sens Actuators B Chem 243:221–225

    Article  CAS  Google Scholar 

  24. Sun H, Dong Y et al (2017) Accurate age estimation of bloodstains based on visible reflectance spectroscopy and chemometrics methods. IEEE Photonics J 9(1):6500614

    Google Scholar 

  25. Li B, Beveridge P et al (2013) The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci Justice 53(3):270–277

    Article  CAS  Google Scholar 

  26. Edelman GJ, Roos M et al (2016) Practical implementation of blood stain age estimation using spectroscopy. IEEE J Sel Topics Quantum Electron 22(3):7200107

    Article  Google Scholar 

  27. Edelman G, van Leeuwen TG et al (2012) Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Sci Int 223(1–3):72–77

    Article  CAS  Google Scholar 

  28. Edelman G, Manti V et al (2012) Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Sci Int 220(1–3):239–244

    Article  CAS  Google Scholar 

  29. Pereira JFQ, Silva CS et al (2017) Evaluation and identification of blood stains with handheld NIR spectrometer. Microchem J 133:561–566

    Article  CAS  Google Scholar 

  30. Morillas AV, Gooch J et al (2018) Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta 184:1–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Aalders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aalders, M., Wilk, L. (2019). Investigating the Age of Blood Traces: How Close Are We to Finding the Holy Grail of Forensic Science?. In: Francese, S. (eds) Emerging Technologies for the Analysis of Forensic Traces. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-20542-3_7

Download citation

Publish with us

Policies and ethics