Skip to main content

Decision-Support for Selecting Big Data Reference Architectures

  • Conference paper
  • First Online:
Business Information Systems (BIS 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 353))

Included in the following conference series:

Abstract

In recent years, big data systems are getting increasingly complex and require a deep domain specific knowledge. Although a multitude of reference architectures exist, it remains challenging to identify the most suitable approach for a specific use case scenario. To overcome this problem and to provide a decision support, the design science research methodology is used. By an initial literature review process and the application of the software architecture comparison analysis method, currently established big data reference architectures are identified and compared to each other. Finally, an Analytic Hierarchy Process as the main artefact is proposed, demonstrated and evaluated on a real world use-case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresner Advisory Services, LLC: Big Data Analytics Market Study. https://www.microstrategy.com/us/resources/library/reports/dresner-big-data-analytics-market-study. Accessed 5 Dec 2018

  2. NIST Big Data Interoperability Framework. Volume 1, Definitions. National Institute of Standards and Technology

    Google Scholar 

  3. Volk, M., Pohl, M., Turowski, K.: Classifying big data technologies - an ontology-based approach. In: 24th Americas Conference on Information 2018. Association for Information Systems, New Orleans, LA, USA (2018)

    Google Scholar 

  4. ISO/IEC/IEEE 42010:2011: Systems and software engineering — Architecture description. Geneva, CH (2011)

    Google Scholar 

  5. Marz, N.: How to beat the CAP theorem. http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html. Accessed 5 Dec 2018

  6. Lněnička, M.: AHP model for the big data analytics platform selection. Acta Informatica Pragensia 4, 108–121 (2015)

    Article  Google Scholar 

  7. Nadal, S., et al.: A software reference architecture for semantic-aware Big Data systems. Inf. Softw. Technol. 90, 75–92 (2017)

    Article  Google Scholar 

  8. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)

    Article  Google Scholar 

  9. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manage. Inf. Syst. 24, 45–77 (2007)

    Article  Google Scholar 

  10. Webster, J., Watson, R.T.: Guest Editorial: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26, xiii–xxii (2002)

    Google Scholar 

  11. Stoermer, C., Bachmann, F., Verhoef, C.: SACAM: The Software Architecture Comparison Analysis Method. Pittsburgh, Pennsylvania (2003)

    Google Scholar 

  12. Azarmi, B.: Scalable Big Data Architecture. A Practitioner’s Guide to Choosing Relevant Big Data Architecture. Apress, Berkeley (2016)

    Google Scholar 

  13. Haunschild, R., Hug, S.E., Brändle, M.P., Bornmann, L.: The number of linked references of publications in Microsoft Academic in comparison with the Web of Science. Scientometrics 114, 367–370 (2018)

    Article  Google Scholar 

  14. Kiran, M., Murphy, P., Monga, I., Dugan, J., Baveja, S.S.: Lambda architecture for cost-effective batch and speed big data processing. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2785–2792. IEEE (2015)

    Google Scholar 

  15. Marz, N., Warren, J.: Big Data. Principles and Best Practices of Scalable Real-Time Data Systems. Manning, Shelter Island (2015)

    Google Scholar 

  16. Kreps, J.: Questioning the Lambda Architecture. The Lambda Architecture has its merits, but alternatives are worth exploring. https://www.oreilly.com/ideas/questioning-the-lambda-architecture. Accessed 5 Dec 2018

  17. Zschörnig, T., Wehlitz, R., Franczyk, B.: A personal analytics platform for the Internet of Things - implementing Kappa Architecture with microservice-based stream processing. In: Proceedings of the 19th International Conference on Enterprise Information Systems, pp. 733–738. SCITEPRESS (2017)

    Google Scholar 

  18. Wingerath, W., Gessert, F., Friedrich, S., Ritter, N.: Real-time stream processing for Big Data. it Inf. Technol. 58(4), 186–194 (2016)

    Google Scholar 

  19. Martínez-Prieto, M.A., Cuesta, C.E., Arias, M., Fernández, J.D.: The solid architecture for real-time management of big semantic data. Future Gener. Comput. Syst. 47, 62–79 (2015)

    Article  Google Scholar 

  20. Cuesta, C.E., Martínez-Prieto, M.A., Fernández, J.D.: Towards an architecture for managing big semantic data in real-time. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 45–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39031-9_5

    Chapter  Google Scholar 

  21. Pääkkönen, P., Pakkala, D.: Reference architecture and classification of technologies, products and services for big data systems. Big Data Res. 2, 166–186 (2015)

    Article  Google Scholar 

  22. Demchenko, Y., de Laat, C., Membrey, P.: Defining architecture components of the Big Data Ecosystem. In: 2014 International Conference on Collaboration Technologies and Systems (CTS), pp. 104–112. IEEE (2014)

    Google Scholar 

  23. Kumar, A., et al.: A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 69, 596–609 (2017)

    Article  Google Scholar 

  24. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  25. Alves, C., Finkelstein, A.: Challenges in COTS decision-making. In: Tortora, G. (ed.) Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering, p. 789. ACM, New York (2002)

    Google Scholar 

  26. Alebrahim, A.: Bridging the Gap between Requirements Engineering and Software Architecture. Springer Fachmedien Wiesbaden, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-17694-5

    Book  Google Scholar 

  27. Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The concept of reference architectures. Syst. Eng. 13(1), 14–27 (2009)

    Google Scholar 

  28. Anwer, H., Fatima, K.N., Saqib, N.A.: Fraud-sentient security architecture for improved telephone banking experience. In: IEEE 7th Annual Information 2016, pp. 1–7 (2016)

    Google Scholar 

  29. Schönebeck, B., Skottke, E.-M.: „Big Data“ und Kundenzufriedenheit: Befragungen versus Social Media? In: Gansser, O., Krol, B. (eds.) Moderne Methoden der Marktforschung. F, pp. 229–245. Springer, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-09745-5_13

    Chapter  Google Scholar 

  30. Huici, F., Di Pietro, A., Trammell, B., Gomez Hidalgo, J.M., Martinez Ruiz, D., d’Heureuse, N.: Blockmon: a high-performance composable network traffic measurement system. In: Eggert, L. (ed.) Proceedings of the ACM SIGCOMM 2012 Conference, p. 79. ACM Press, New York (2012)

    Google Scholar 

  31. Daily, J., Peterson, J.: Predictive maintenance: how big data analysis can improve maintenance. In: Richter, K., Walther, J. (eds.) Supply Chain Integration Challenges in Commercial Aerospace, pp. 267–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46155-7_18

    Chapter  Google Scholar 

  32. Sohangir, S., Wang, D., Pomeranets, A., Khoshgoftaar, T.M.: Big data. Deep learning for financial sentiment analysis. J. Big Data 5, 210 (2018)

    Article  Google Scholar 

  33. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98 (2008)

    Google Scholar 

  34. Lambda at Weather Scale – Databricks. https://databricks.com/session/lambda-at-weather-scale. Accessed 4 Sept 2018

  35. Wang, Y.-M., Luo, Y.: On rank reversal in decision analysis. Math. Comput. Model. 49, 1221–1229 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Volk , Sascha Bosse , Dennis Bischoff or Klaus Turowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volk, M., Bosse, S., Bischoff, D., Turowski, K. (2019). Decision-Support for Selecting Big Data Reference Architectures. In: Abramowicz, W., Corchuelo, R. (eds) Business Information Systems. BIS 2019. Lecture Notes in Business Information Processing, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-030-20485-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20485-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20484-6

  • Online ISBN: 978-3-030-20485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics