Skip to main content

Scenes, Saliency Maps and Scanpaths

  • Chapter
  • First Online:
Eye Movement Research

Abstract

The aim of this chapter is to review some of the key research investigating how people look at pictures. In particular, my goal is to provide theoretical background for those that are new to the field, while also explaining some of the relevant methods and analyses. I begin by introducing eye movements in the context of natural scene perception. As in other complex tasks, eye movements provide a measure of attention and information processing over time, and they tell us about how the foveated visual system determines what to prioritise. I then describe some of the many measures which have been derived to summarize where people look in complex images. These include global measures, analyses based on regions of interest and comparisons based on heat maps. A particularly popular approach for trying to explain fixation locations is the saliency map approach, and the first half of the chapter is mostly devoted to this topic. A large number of papers and models are built on this approach, but it is also worth spending time on this topic because the methods involved have been used across a wide range of applications. The saliency map approach is based on the fact that the visual system has topographic maps of visual features, that contrast within these features seems to be represented and prioritized, and that a central representation can be used to control attention and eye movements. This approach, and the underlying principles, has led to an increase in the number of researchers using complex natural scenes as stimuli. It is therefore important that those new to the field are familiar with saliency maps, their usage, and their pitfalls. I describe the original implementation of this approach (Itti & Koch, 2000), which uses spatial filtering at different levels of coarseness and combines them in an attempt to identify the regions which stand out from their background. Evaluating this model requires comparing fixation locations to model predictions. Several different experimental and comparison methods have been used, but most recent research shows that bottom-up guidance is rather limited in terms of predicting real eye movements. The second part of the chapter is largely concerned with measuring eye movement scanpaths. Scanpaths are the sequential patterns of fixations and saccades made when looking at something for a period of time. They show regularities which may reflect top-down attention, and some have attempted to link these to memory and an individual’s mental model of what they are looking at. While not all researchers will be testing hypotheses about scanpaths, an understanding of the underlying methods and theory will be of benefit to all. I describe the theories behind analyzing eye movements in this way, and various methods which have been used to represent and compare them. These methods allow one to quantify the similarity between two viewing patterns, and this similarity is linked to both the image and the observer. The last part of the chapter describes some applications of eye movements in image viewing. The methods discussed can be applied to complex images, and therefore these experiments can tell us about perception in art and marketing, as well as about machine vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Althoff, R. R., & Cohen, N. J. (1999). Eye-movement-based memory effect: A reprocessing effect in face perception. Journal of Experimental Psychology. Learning, Memory, and Cognition, 25(4), 997–1010.

    Article  PubMed  Google Scholar 

  • Atalay, A. S., Bodur, H. O., & Rasolofoarison, D. (2012). Shining in the center: Central gaze cascade effect on product choice. Journal of Consumer Research, 39(4), 848–866.

    Article  Google Scholar 

  • Ballard, D. H. (1991). Animate vision. Artificial Intelligence, 48(1), 57–86.

    Article  Google Scholar 

  • Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637–660.

    Article  Google Scholar 

  • Birmingham, E., Bischof, W. F., & Kingstone, A. (2009). Saliency does not account for fixations to eyes within social scenes. Vision Research, 49(24), 2992–3000.

    Article  PubMed  Google Scholar 

  • Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borji, A., & Itti, L. (2013). State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 185–207.

    Article  PubMed  Google Scholar 

  • Borji, A., Sihite, D. N., & Itti, L. (2013). Objects do not predict fixations better than early saliency: A re-analysis of Einhäuser et al.’s data. Journal of Vision, 13(10), 18.

    Google Scholar 

  • Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience, 9(1), 27–38.

    Article  PubMed  Google Scholar 

  • Bruce, N., & Tsotsos, J. (2005). Saliency based on information maximization. In Advances in Neural Information Processing Systems (pp. 155–162).

    Google Scholar 

  • Buswell, G. T. (1935). How people look at pictures. University of Chicago Press.

    Google Scholar 

  • Choi, Y. S., Mosley, A. D., & Stark, L. W. (1995). String editing analysis of human visual search. Optometry and Vision Science, 72(7), 439–451.

    Article  PubMed  Google Scholar 

  • Clarke, A. D., & Tatler, B. W. (2014). Deriving an appropriate baseline for describing fixation behaviour. Vision Research, 102, 41–51.

    Article  PubMed  Google Scholar 

  • Cristino, F., Mathot, S., Theeuwes, J., & Gilchrist, I. (2010). ScanMatch: A novel method for comparing saccade sequences. Behavior Research Methods, 42(3), 692–700.

    Article  PubMed  Google Scholar 

  • Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R., & Holmqvist, K. (2012). It depends on how you look at it: Scanpath comparison in multiple dimensions with MultiMatch, a vector-based approach. Behavior Research Methods, 44(4), 1079–1100.

    Article  PubMed  Google Scholar 

  • Dickinson, C. A., & Intraub, H. (2009). Spatial asymmetries in viewing and remembering scenes: Consequences of an attentional bias? Attention, Perception, & Psychophysics, 71(6), 1251–1262.

    Article  Google Scholar 

  • DiPaola, S., Riebe, C., & Enns, J. (2010). Rembrandt’s textural agency: A shared perspective in visual art and science. Leonardo, 43(2), 145–151.

    Article  Google Scholar 

  • Dodge, R., & Cline, T. S. (1901). The angle velocity of eye movements. Psychological Review, 8(2), 145.

    Article  Google Scholar 

  • Ehinger, K. A., Hidalgo-Sotelo, B., Torralba, A., & Oliva, A. (2009). Modelling search for people in 900 scenes: A combined source model of eye guidance. Visual cognition, 17(6–7), 945–978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Einhäuser, W., Rutishauser, U., & Koch, C. (2008a). Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 8(2), 2.

    Article  PubMed  Google Scholar 

  • Einhäuser, W., Spain, M., & Perona, P. (2008b). Objects predict fixations better than early saliency. Journal of Vision, 8(14), 18.

    Article  PubMed  Google Scholar 

  • Elazary, L., & Itti, L. (2008). Interesting objects are visually salient. Journal of Vision, 8(3), 3.

    Article  PubMed  Google Scholar 

  • Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. Oxford University Press.

    Google Scholar 

  • Foulsham, T. (2015). Scene perception. To appear in Fawcett, Risko & Kingstone (Eds.). The Handbook of Attention. MIT Press.

    Google Scholar 

  • Foulsham, T., Barton, J. J., Kingstone, A., Dewhurst, R., & Underwood, G. (2009). Fixation and saliency during search of natural scenes: the case of visual agnosia. Neuropsychologia, 47(8), 1994–2003.

    Article  PubMed  Google Scholar 

  • Foulsham, T., Dewhurst, R., Nyström, M., Jarodzka, H., Johansson, R., Underwood, G., et al. (2012). Comparing scanpaths during scene encoding and recognition: A multi-dimensional approach. Journal of Eye Movement Research, 5(4), 3.

    Google Scholar 

  • Foulsham, T., Gray, A., Nasiopoulos, E., & Kingstone, A. (2013). Leftward biases in picture scanning and line bisection: A gaze-contingent window study. Vision Research, 78, 14–25.

    Article  PubMed  Google Scholar 

  • Foulsham, T., & Kingstone, A. (2013a). Optimal and preferred eye landing positions in objects and scenes. The Quarterly Journal of Experimental Psychology, 66(9), 1707–1728.

    Article  PubMed  Google Scholar 

  • Foulsham, T., & Kingstone, A. (2013b). Fixation-dependent memory for natural scenes: An experimental test of scanpath theory. Journal of Experimental Psychology: General, 142(1), 41.

    Article  Google Scholar 

  • Foulsham, T., Kingstone, A., & Underwood, G. (2008). Turning the world around: Patterns in saccade direction vary with picture orientation. Vision Research, 48(17), 1777–1790.

    Article  PubMed  Google Scholar 

  • Foulsham, T., & Underwood, G. (2007). How does the purpose of inspection influence the potency of visual salience in scene perception? Perception, 36, 1123–1138.

    Article  PubMed  Google Scholar 

  • Foulsham, T., & Underwood, G. (2008). What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. Journal of Vision, 8(2), 6.

    Article  PubMed  Google Scholar 

  • Freeth, M., Foulsham, T., & Chapman, P. (2011). The influence of visual saliency on fixation patterns in individuals with Autism Spectrum Disorders. Neuropsychologia, 49(1), 156–160.

    Article  PubMed  Google Scholar 

  • Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency. In Advances in Neural Information Processing Systems (pp. 545–552).

    Google Scholar 

  • Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in cognitive sciences, 7(11), 498–504.

    Article  PubMed  Google Scholar 

  • Henderson, J. M., Brockmole, J. R., Castelhano, M. S., & Mack, M. L. (2007). Visual saliency does not account for eye movements during visual search in real-world scenes. In R. van Gompel, M. Fischer, W. Murray, & R. W. Hill (Eds.), Eye movements: A window on mind and brain (pp. 537–562). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Henderson, J. M., Malcolm, G. L., & Schandl, C. (2009). Searching in the dark: Cognitive relevance drives attention in real-world scenes. Psychonomic Bulletin & Review, 16(5), 850–856.

    Article  Google Scholar 

  • Henderson, J. M., & Pierce, G. L. (2008). Eye movements during scene viewing: Evidence for mixed control of fixation durations. Psychonomic Bulletin & Review, 15(3), 566–573.

    Article  Google Scholar 

  • Holm, L., & Mäntylä, T. (2007). Memory for scenes: Refixations reflect retrieval. Memory & Cognition, 35(7), 1664–1674.

    Article  Google Scholar 

  • Holmberg, N., Sandberg, H., & Holmqvist, K. (2014). Advert saliency distracts children’s visual attention during task-oriented internet use. Frontiers in Psychology, 5.

    Google Scholar 

  • Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford University Press.

    Google Scholar 

  • Itti, L., & Baldi, P. F. (2005). Bayesian surprise attracts human attention. In Advances in Neural Information Processing Systems (pp. 547–554).

    Google Scholar 

  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10), 1489–1506.

    Article  PubMed  Google Scholar 

  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.

    Article  PubMed  Google Scholar 

  • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.

    Article  Google Scholar 

  • Johansson, R., Holsanova, J., Dewhurst, R., & Holmqvist, K. (2012). Eye movements during scene recollection have a functional role, but they are not reinstatements of those produced during encoding. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1289.

    PubMed  Google Scholar 

  • Josephson, S. & Holmes, M. E. (2002). Visual attention to repeated internet images: Testing the scanpath theory on the world wide web. In ETRA ‘02: Proceedings of the 2002 Symposium on Eye Tracking Research and Applications, (pp. 43–49). New York: ACM.

    Google Scholar 

  • Judd, T., Ehinger, K., Durand, F., & Torralba, A. (2009). Learning to predict where humans look. In Proceedings of the 12th International Conference on Computer Vision, (pp. 2106–2113). IEEE.

    Google Scholar 

  • Klein, C., Betz, J., Hirschbuehl, M., Fuchs, C., Schmiedtová, B., et al. (2014). Describing art—An interdisciplinary approach to the effects of speaking on gaze movements during the beholding of paintings. PLoS ONE, 9(12), e102439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.

    PubMed  Google Scholar 

  • Kümmerer, M., Wallis, T. S., & Bethge, M. (2015). Information-theoretic model comparison unifies saliency metrics. Proceedings of the National Academy of Sciences, 112(52), 16054–16059.

    Article  Google Scholar 

  • Laeng, B., & Teodorescu, D.-S. (2002). Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26(2), 207–231.

    Article  Google Scholar 

  • Land, M. F. (1993). Eye-head coordination during driving. In Systems, man and cybernetics, (pp. 490–494). IEEE.

    Google Scholar 

  • Le Meur, O., & Baccino, T. (2013). Methods for comparing scanpaths and saliency maps: Strengths and weaknesses. Behavior Research Methods, 45(1), 251–266.

    Article  PubMed  Google Scholar 

  • Le Meur, O., Le Callet, P., Barba, D., & Thoreau, D. (2006). A coherent computational approach to model the bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 802–817.

    Article  PubMed  Google Scholar 

  • Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 565.

    PubMed  Google Scholar 

  • Mackworth, N. H., & Morandi, A. J. (1967). The gaze selects informative details within pictures. Perception and Psychophysics, 2(11), 547–552.

    Article  Google Scholar 

  • Mackworth, N. H., & Thomas, E. L. (1962). Head-mounted eye-marker camera. Journal of the Optical Society of America (1917–1983), 52, 713.

    Google Scholar 

  • Mannan, S., Ruddock, K., & Wooding, D. (1995). Automatic control of saccadic eye movements made in visual inspection of briefly presented 2-D images. Spatial Vision, 9(3), 363–386.

    Article  PubMed  Google Scholar 

  • Mills, M., Hollingworth, A., Van der Stigchel, S., Hoffman, L., & Dodd, M. D. (2011). Examining the influence of task set on eye movements and fixations. Journal of Vision, 11(8), 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421(6921), 370–373.

    Article  PubMed  Google Scholar 

  • Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45(2), 205–231.

    Article  PubMed  Google Scholar 

  • Nielsen, J., & Pernice, K. (2010). Eyetracking web usability. New Riders.

    Google Scholar 

  • Nodine, C. F., Locher, P. J., & Krupinski, E. A. (1993). The role of formal art training on perception and aesthetic judgment of art compositions. Leonardo, 219–227.

    Google Scholar 

  • Noton, D., & Stark, L. (1971). Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision Research, 11(9), 929.

    Article  PubMed  Google Scholar 

  • Nuthmann, A., & Henderson, J. M. (2010). Object-based attentional selection in scene viewing. Journal of Vision, 10(8), 20.

    Article  PubMed  Google Scholar 

  • Nuthmann, A., Smith, T. J., Engbert, R., & Henderson, J. M. (2010). CRISP: A computational model of fixation durations in scene viewing. Psychological Review, 117(2), 382.

    Article  PubMed  Google Scholar 

  • Nyström, M., & Holmqvist, K. (2008). Semantic override of low-level features in image viewing-both initially and overall. Journal of Eye-Movement Research, 2(2), 1–2.

    Google Scholar 

  • Ossandon, J. P., Onat, S., & Koenig, P. (2014). Spatial biases in viewing behavior. Journal of Vision, 14(2), 20–20

    Google Scholar 

  • Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42(1), 107–123.

    Article  PubMed  Google Scholar 

  • Peters, R. J., Iyer, A., Itti, L., & Koch, C. (2005). Components of bottom-up gaze allocation in natural images. Vision Research, 45(18), 2397–2416.

    Article  PubMed  Google Scholar 

  • Pieters, R., Rosbergen, E., & Wedel, M. (1999). Visual attention to repeated print advertising: A test of scanpath theory. Journal of Marketing Research, 424–438.

    Google Scholar 

  • Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2(3), 211–228.

    Article  Google Scholar 

  • Privitera, C. M., & Stark, L. W. (2000). Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 970–982.

    Article  Google Scholar 

  • Rayner, K., Rotello, C. M., Stewart, A. J., Keir, J., & Duffy, S. A. (2001). Integrating text and pictorial information: Eye movements when looking at print advertisements. Journal of Experimental Psychology: Applied, 7(3), 219.

    PubMed  Google Scholar 

  • Rothkopf, C. A., Ballard, D. H., & Hayhoe, M. M. (2007). Task and context determine where you look. Journal of Vision, 7(14), 16.

    Article  PubMed  Google Scholar 

  • Schwedes, C., & Wentura, D. (2012). The revealing glance: Eye gaze behavior to concealed information. Memory & Cognition, 40(4), 642–651.

    Article  Google Scholar 

  • Siagian, C., & Itti, L. (2009). Biologically inspired mobile robot vision localization. IEEE Transactions on Robotics, 25(4), 861–873.

    Article  Google Scholar 

  • Stark, L., & Ellis, S. R. (1981). Scanpath revisited: Cognitive models of direct active looking. In D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye movements: Cognition and visual perception (pp. 193–226). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Tatler, B. W., Baddeley, R. J., & Gilchrist, I. D. (2005). Visual correlates of fixation selection: Effects of scale and time. Vision Research, 45(5), 643–659.

    Article  PubMed  Google Scholar 

  • Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of vision, 11(5), 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatler, B. W., & Vincent, B. T. (2009). The prominence of behavioural biases in eye guidance. Visual Cognition, 17(6–7), 1029–1054.

    Article  Google Scholar 

  • Tatler, B. W., Wade, N. J., Kwan, H., Findlay, J. M., & Velichkovsky, B. M. (2010). Yarbus, eye movements, and vision. i-Perception, 1(1), 7.

    Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    Article  PubMed  Google Scholar 

  • Treue, S. (2003). Visual attention: The where, what, how and why of saliency. Current Opinion in Neurobiology, 13(4), 428–432.

    Article  Google Scholar 

  • Tseng, P. H., Cameron, I. G., Pari, G., Reynolds, J. N., Munoz, D. P., & Itti, L. (2013). High-throughput classification of clinical populations from natural viewing eye movements. Journal of Neurology, 260(1), 275–284.

    Article  PubMed  Google Scholar 

  • Underwood, G., & Foulsham, T. (2006). Visual saliency and semantic incongruency influence eye movements when inspecting pictures. Quarterly Journal of Experimental Psychology, 59(11), 1931–1949.

    Article  Google Scholar 

  • Unema, P. J., Pannasch, S., Joos, M., & Velichkovsky, B. M. (2005). Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration. Visual Cognition, 12(3), 473–494.

    Article  Google Scholar 

  • Van der Lans, R., Pieters, R., & Wedel, M. (2008). Competitive brand salience. Marketing Science, 27(5), 922–931.

    Article  Google Scholar 

  • Vig, E., Dorr, M., & Cox, D. (2014). Large-scale optimization of hierarchical features for saliency prediction in natural images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2798–2805).

    Google Scholar 

  • Vogt, S., & Magnussen, S. (2007). Expertise in pictorial perception: Eye-movement patterns and visual memory in artists and laymen. Perception, 36(1), 91–100.

    Article  PubMed  Google Scholar 

  • Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects. Neural Networks, 19(9), 1395–1407.

    Article  PubMed  Google Scholar 

  • Walther, D., Rutishauser, U., Koch, C., & Perona, P. (2005). Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Computer Vision and Image Understanding, 100(1), 41–63.

    Article  Google Scholar 

  • Wedel, M., & Pieters, R. (2008). A review of eye-tracking research in marketing. Review of Marketing Research, 4(2008), 123–147.

    Article  Google Scholar 

  • Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic bulletin & review, 1(2), 202–238.

    Article  Google Scholar 

  • Wooding, D. S. (2002). Eye movements of large populations: II. Deriving regions of interest, coverage, and similarity using fixation maps. Behavior Research Methods, Instruments, & Computers, 34(4), 518–528.

    Article  Google Scholar 

  • Wurtz, R. H., & Goldberg, M. E. (1972). Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. Journal of Neurophysiology, 35(4), 575–586.

    Google Scholar 

  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum press.

    Book  Google Scholar 

  • Zelinsky, G. J. (2008). A theory of eye movements during target acquisition. Psychological Review, 115(4), 787.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelinsky, G. J., & Bisley, J. W. (2015). The what, where, and why of priority maps and their interactions with visual working memory. Annals of the New York Academy of Sciences, 1339(1), 154–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelinsky, G. J., & Loschky, L. C. (2005). Eye movements serialize memory for objects in scenes. Perception and Psychophysics, 67(4), 676–690.

    Article  PubMed  Google Scholar 

  • Zhang, L., Tong, M. H., Marks, T. K., Shan, H., & Cottrell, G. W. (2008). SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7), 32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Foulsham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foulsham, T. (2019). Scenes, Saliency Maps and Scanpaths. In: Klein, C., Ettinger, U. (eds) Eye Movement Research. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-20085-5_6

Download citation

Publish with us

Policies and ethics