Skip to main content

Graph Edge Entropy in Maxwell-Boltzmann Statistics for Alzheimer’s Disease Analysis

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11510))

  • 803 Accesses

Abstract

In this paper, we explore how to the decompose the global thermodynamic entropy of a network into components associated with its edges. Commencing from a statistical mechanical picture in which the normalised Laplacian matrix plays the role of Hamiltonian operator, thermodynamic entropy can be calculated from partition function associated with different energy level occupation distributions arising from Maxwell-Boltzmann statistics. Using the spectral decomposition of the Laplacian, we show how to project the edge-entropy components so that the detailed distribution of entropy across the edges of a network can be achieved. We apply the resulting method to fMRI activation networks to evaluate the qualitative and quantitative characterisations. The entropic measurement turns out to be an effective tool to identify the differences in the structure of Alzheimer’s disease by selecting the most salient anatomical brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. J. Eur. Neuropsychopharmacol. 20, 519–534 (2010)

    Article  Google Scholar 

  2. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–69 (2010)

    Article  Google Scholar 

  3. Ye, C., Wilson, R.C., Comin, C.H., Costa, L.D.F., Hancock, E.R.: Approximate von Neumann entropy for directed graphs. Phys. Rev. E 89(5), 052804 (2014)

    Article  Google Scholar 

  4. Rombouts, S.A., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P.: Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum. Brain Mapp. 26(4), 231–239 (2005)

    Article  Google Scholar 

  5. Khazaee, A., Ebrahimzadeh, A., Babajani-Ferem, A.: Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behav. Brain Res. 322, 339–350 (2016)

    Article  Google Scholar 

  6. Wang, J., Wilson, R.C., Hancock, E.R.: Spin statistics, partition functions and network entropy. J. Complex Netw. 5(6), 858–883 (2017)

    Article  MathSciNet  Google Scholar 

  7. Passerini, F., Severini, S.: The von Neumann entropy of networks. Int. J. Agent Technol. Syst. 1, 58–67 (2008)

    Article  Google Scholar 

  8. Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from von Neumann entropy. Pattern Recognit. Lett. 33, 1958–1967 (2012)

    Article  Google Scholar 

  9. Alzheimer’s Disease Neuroimaging Initiative (ADNI). http://adni.loni.usc.edu/

  10. Ye, C., Wilson, R.C., Hancock, E.R.: An entropic edge assortativity measure. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 23–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_3

    Chapter  Google Scholar 

  11. Wang, J., Wilson, R.C., Hancock, E.R.: Network edge entropy from Maxwell-Boltzmann statistics. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 254–264. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_23

    Chapter  Google Scholar 

  12. Wang, J., Wilson, R.C., Hancock, E.R.: fMRI activation network analysis using Bose-Einstein entropy. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 218–228. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_20

    Chapter  Google Scholar 

  13. Van Hoesen, G.W., Augustinack, J.C., Dierking, J., Redman, S.J., Thangavel, R.: The parahippocampal gyrus in Alzheimer’s disease: clinical and preclinical neuroanatomical correlates. Ann. New York Acad. Sci. 911(1), 254–274 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjia Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Wilson, R.C., Hancock, E.R. (2019). Graph Edge Entropy in Maxwell-Boltzmann Statistics for Alzheimer’s Disease Analysis. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20081-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20080-0

  • Online ISBN: 978-3-030-20081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics