Skip to main content

3D Bioprinting of Cardiovascular Tissue Constructs: Cardiac Bioinks

  • Chapter
  • First Online:
Cardiovascular Regenerative Medicine

Abstract

Three-dimensional (3D) cardiac tissue bioprinting sits at the crossroads of cardiovascular biology, additive manufacturing, and materials science and engineering. As such this area of research requires know-how from each of the above fields and has to address some significant challenges when it comes to translational success and novel developments. Of specific interest are advances in bioink formulation, where biochemical and mechanical properties of hydrogels must be precisely tailored to produce cardiac-specific bioinks that could support functional heart tissue for diverse in vitro and in vivo applications. Hydrogel-based bioinks must fulfill several key biophysical and biochemical requirements, before, during, and post-printing processes. This chapter explores in depth the parameters that are necessary for a successful bioink solution that can support cardiac tissue structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  2. Wang Z, et al. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol. 2017;5:23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suntornnond R, et al. A mathematical model on the resolution of extrusion bioprinting for the development of new bioinks. Materials (Basel). 2016;9(9):756.

    Article  PubMed Central  CAS  Google Scholar 

  5. Jang J. 3D bioprinting and in vitro cardiovascular tissue modeling. Bioengineering (Basel). 2017;4(3):71.

    Article  CAS  Google Scholar 

  6. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Holzl K, et al. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002.

    Article  PubMed  CAS  Google Scholar 

  8. Ouyang L, et al. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020.

    Article  PubMed  CAS  Google Scholar 

  9. Smith L, Cho S, Discher DE. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo. Semin Cell Dev Biol. 2017;71:84–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geckil H, et al. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5(3):469–84.

    Article  CAS  PubMed  Google Scholar 

  11. Mandrycky C, et al. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–34.

    Article  CAS  PubMed  Google Scholar 

  12. Chung JHY, et al. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 2013;1(7):763–73.

    Article  CAS  PubMed  Google Scholar 

  13. Liu W, et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication. 2018;10(2):024102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Paxton N, et al. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):044107.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao Y, et al. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 2015;7(4):045002.

    Article  PubMed  Google Scholar 

  16. Stratesteffen H, et al. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication. 2017;9(4):045002.

    Article  PubMed  CAS  Google Scholar 

  17. Graham AD, et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep. 2017;7(1):7004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42.

    Article  CAS  PubMed  Google Scholar 

  19. Dababneh AB, Ozbolat IT. Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng-Trans ASME. 2014;136(6):061016.

    Article  Google Scholar 

  20. Entsfellner K, et al. First 3D printed medical robot for ENT surgery – application specific manufacturing of laser sintered disposable manipulators. 2014 IEEE/RSJ international conference on Intelligent Robots and Systems (Iros 2014), 2014. p. 4278–83.

    Google Scholar 

  21. Zhang Z, et al. Effects of living cells on the bioink printability during laser printing. Biomicrofluidics. 2017;11(3):034120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Leberfinger AN, et al. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6(10):1940–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Malyala SK, Kumar YR, Rao CSP. Organ printing with life cells: a review. Mater Today-Proc. 2017;4(2):1074–83.

    Article  Google Scholar 

  24. Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017;51:1–20.

    Article  CAS  PubMed  Google Scholar 

  25. Ravnic DJ, Leberfinger AN, Ozbolat IT. Bioprinting and cellular therapies for type 1 diabetes. Trends Biotechnol. 2017;35(11):1025–34.

    Article  CAS  PubMed  Google Scholar 

  26. Woliner-van der Weg W, et al. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using (111)In-exendin. EJNMMI Phys. 2016;3(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Homan KA, et al. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips. Scientific Reports. 2016;6:34845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang YS, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148–63.

    Article  PubMed  Google Scholar 

  29. Ong CS, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep. 2017;7:4566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cheung DYC, Duan B, Butcher JT. Chapter 21 – Bioprinting of cardiac tissues. In: Atala A, Yoo JJ, editors. Essentials of 3D biofabrication and translation. Boston: Academic; 2015. p. 351–70.

    Chapter  Google Scholar 

  31. Lee S, et al. 3D bioprinted functional and contractile cardiac tissue constructs. Tissue Eng A. 2017;23:S96.

    Google Scholar 

  32. Serpooshan V, et al. Bioengineering cardiac constructs using 3D printing. J 3D Print Med. 2017;1(2):123.

    Article  CAS  Google Scholar 

  33. Nair K, et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4(8):1168–77.

    Article  CAS  PubMed  Google Scholar 

  34. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. 2016;17(12):1976.

    Article  PubMed Central  CAS  Google Scholar 

  35. Duan B, et al. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101(5):1255–64.

    Article  PubMed  CAS  Google Scholar 

  36. Lee YB, et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol. 2010;223(2):645–52.

    Article  CAS  PubMed  Google Scholar 

  37. Kolesky DB, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30.

    Article  CAS  PubMed  Google Scholar 

  38. Gaetani R, et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339–48.

    Article  CAS  PubMed  Google Scholar 

  39. Luo Y, et al. Injectable hyaluronic acid-dextran hydrogels and effects of implantation in ferret vocal fold. J Biomed Mater Res B Appl Biomater. 2010;93b(2):386–93.

    Article  CAS  Google Scholar 

  40. Lim KS, et al. New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater Sci Eng. 2016;2(10):1752–62.

    Article  CAS  PubMed  Google Scholar 

  41. Liu W, et al. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater. 2017;6(12). https://doi.org/10.1002/adhm.201601451.

    Article  CAS  Google Scholar 

  42. Yin J, et al. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces. 2018;10(8):6849–57.

    Article  CAS  PubMed  Google Scholar 

  43. Levato R, et al. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication. 2014;6(3):035020.

    Article  PubMed  CAS  Google Scholar 

  44. Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. 2017;45(1):195–209.

    Article  PubMed  Google Scholar 

  45. Blaeser A, et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326–33.

    Article  CAS  PubMed  Google Scholar 

  46. Forget A, et al. Mechanically tunable bioink for 3D bioprinting of human cells. Adv Healthc Mater. 2017;6(20). https://doi.org/10.1002/adhm.201700255.

    Article  CAS  Google Scholar 

  47. Khazaei M, Salehi E. Myocardial capillary density in normal and diabetic male rats: effect of bezafibrate. Res Pharm Sci. 2013;8(2):119–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vanderburgh J, Sterling JA, Guelcher SA. 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann Biomed Eng. 2017;45(1):164–79.

    Article  PubMed  Google Scholar 

  49. Zhang YS, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Serpooshan V, et al. Use of bio-mimetic three-dimensional technology in therapeutics for heart disease. Bioengineered. 2014;5(3):193–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Serpooshan V, Ruiz-Lozano P. Ultra-rapid manufacturing of engineered epicardial substitute to regenerate cardiac tissue following acute ischemic injury. Methods Mol Biol. 2014;1210:239–48.

    Article  CAS  PubMed  Google Scholar 

  52. Serpooshan V, Wu SM. Patching up broken hearts: cardiac cell therapy gets a bioengineered boost. Cell Stem Cell. 2014;15(6):671–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bartnikowski M, et al. Tailoring hydrogel viscoelasticity with physical and chemical crosslinking. Polymers. 2015;7(12):2650–69.

    Article  CAS  Google Scholar 

  54. Schoenmakers DC, Rowan AE, Kouwer PHJ. Crosslinking of fibrous hydrogels. Nat Commun. 2018;9:2172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jung J, Oh J. Influence of photo-initiator concentration on the viability of cells encapsulated in photo-crosslinked microgels fabricated by microfluidics. Dig J Nanomater Biostruct. 2014;9(2):503–9.

    Google Scholar 

  56. Zhou D, Ito Y. Visible light-curable polymers for biomedical applications. Sci China-Chem. 2014;57(4):510–21.

    Article  CAS  Google Scholar 

  57. Akar E, Altinisik A, Seki Y. Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym. 2012;90(4):1634–41.

    Article  CAS  PubMed  Google Scholar 

  58. Fekete T, et al. Synthesis and characterization of superabsorbent hydrogels based on hydroxyethylcellulose and acrylic acid. Carbohydr Polym. 2017;166:300–8.

    Article  CAS  PubMed  Google Scholar 

  59. Segura T, Chung PH, Shea LD. DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials. 2005;26(13):1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boerma M, et al. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation. BMC Genomics. 2005;6:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Johnson DM, et al. Polymer spray deposition: a novel aerosol-based, electrostatic digital deposition system for additive manufacturing. NIP Digit Fabric Conf. 2016;2016(1):129–33.

    Google Scholar 

  62. Wu Z, et al. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep. 2016;6:24474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Irvine SA, et al. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices. 2015;17(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Najdanovic-Visak V, et al. Salting-out in aqueous solutions of ionic liquids and K(3)PO(4): aqueous biphasic systems and salt precipitation. Int J Mol Sci. 2007;8(8):736–48.

    Article  CAS  PubMed Central  Google Scholar 

  65. Wang X, et al. Gelatin-based hydrogels for organ 3D bioprinting. Polymers (Basel). 2017;9(9):401.

    Article  CAS  Google Scholar 

  66. Ersumo N, Witherel CE, Spiller KL. Differences in time-dependent mechanical properties between extruded and molded hydrogels. Biofabrication. 2016;8(3):–035012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bueno VB, et al. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym. 2013;92(2):1091–9.

    Article  CAS  PubMed  Google Scholar 

  68. Rahali K, et al. Synthesis and characterization of nanofunctionalized gelatin methacrylate hydrogels. Int J Mol Sci. 2017;18(12):2675.

    Article  PubMed Central  CAS  Google Scholar 

  69. Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn. 2016;245(3):351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tosun Z, Villegas-Montoya C, McFetridge PS. The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues. J Vasc Surg. 2011;54(5):1451–60.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Velasco MA, Narvaez-Tovar CA, Garzon-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int. 2015;2015:729076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fenn SL, Oldinski RA. Visible light crosslinking of methacrylated hyaluronan hydrogels for injectable tissue repair. J Biomed Mater Res B Appl Biomater. 2016;104(6):1229–36.

    Article  CAS  PubMed  Google Scholar 

  73. Burkoth AK, Burdick J, Anseth KS. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. J Biomed Mater Res. 2000;51(3):352–9.

    Article  CAS  PubMed  Google Scholar 

  74. Coletta DJ, et al. (∗) Bone regeneration mediated by a bioactive and biodegradable extracellular matrix-like hydrogel based on elastin-like recombinamers. Tissue Eng Part A. 2017;23(23–24):1361–71.

    Article  CAS  PubMed  Google Scholar 

  75. Du JZ, et al. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules. 2007;8(11):3375–81.

    Article  CAS  PubMed  Google Scholar 

  76. Jeon O, et al. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials. 2012;33(13):3503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kocen R, et al. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomed Mater. 2017;12(2):025004.

    Article  PubMed  Google Scholar 

  78. Prestwich GD, et al. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release. 1998;53(1–3):93–103.

    Article  CAS  PubMed  Google Scholar 

  79. Shin H, et al. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials. 2003;24(19):3201–11.

    Article  CAS  PubMed  Google Scholar 

  80. Badylak SF, et al. The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplant. 2006;15:S29–40.

    Article  PubMed  Google Scholar 

  81. Eitan Y, et al. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods. 2010;16(4):671–83.

    Article  CAS  PubMed  Google Scholar 

  82. Serpooshan V, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials. 2013;34(36):9048–55.

    Article  CAS  PubMed  Google Scholar 

  83. Wang B, et al. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir. 2013;29(35):11109–17.

    Article  CAS  PubMed  Google Scholar 

  84. Dvir T, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A. 2009;106(35):14990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114(2):354–67.

    CAS  PubMed  Google Scholar 

  86. Kreutziger KL, et al. Developing vasculature and stroma in engineered human myocardium. Tissue Eng Part A. 2011;17(9–10):1219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lux M, et al. In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Acta Biomater. 2016;30:177–87.

    Article  CAS  PubMed  Google Scholar 

  88. Mannhardt I, Marsano A, Teuschl A. Perfusion bioreactors for prevascularization strategies in cardiac tissue engineering. In: Holnthoner W, et al., editors. Vascularization for tissue engineering and regenerative medicine. Cham: Springer International Publishing; 2017. p. 1–14.

    Google Scholar 

  89. Montgomery M, Zhang B, Radisic M. Cardiac tissue vascularization: from angiogenesis to microfluidic blood vessels. J Cardiovasc Pharmacol Ther. 2014;19(4):382–93.

    Article  CAS  PubMed  Google Scholar 

  90. Pagliari S, et al. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds. Front Physiol. 2014;5:210.

    PubMed  PubMed Central  Google Scholar 

  91. Sarig U, et al. Pushing the envelope in tissue engineering: ex vivo production of thick vascularized cardiac extracellular matrix constructs. Tissue Eng Part A. 2015;21(9–10):1507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schaefer JA, et al. A cardiac patch from aligned microvessel and cardiomyocyte patches. J Tissue Eng Regen Med. 2018;12(2):546–56.

    Article  CAS  PubMed  Google Scholar 

  93. Vunjak-Novakovic G, et al. Challenges in cardiac tissue engineering. Tissue Eng B-Rev. 2010;16(2):169–87.

    Article  Google Scholar 

  94. Johansson B, et al. Myocardial capillary supply is limited in hypertrophic cardiomyopathy: a morphological analysis. Int J Cardiol. 2008;126(2):252–7.

    Article  PubMed  Google Scholar 

  95. Mohammed SF, et al. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131(6):550–9.

    Article  PubMed  Google Scholar 

  96. Rouwkema J, et al. Supply of nutrients to cells in engineered tissues. Biotechnol Genet Eng Rev. 2010;26:163–78.

    Article  CAS  PubMed  Google Scholar 

  97. Liu J, et al. Monitoring nutrient transport in tissue-engineered grafts. J Tissue Eng Regen Med. 2015;9(8):952–60.

    Article  CAS  PubMed  Google Scholar 

  98. McMurtrey RJ. Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids. Tissue Eng Part C Methods. 2016;22(3):221–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lovett M, et al. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev. 2009;15(3):353–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Phelps EA, Garcia AJ. Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol. 2010;21(5):704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoch E, et al. Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J Mater Chem B. 2013;1(41):5675–85.

    Article  CAS  PubMed  Google Scholar 

  102. Chen WP, Wu SM. Small molecule regulators of postnatal Nkx2.5 cardiomyoblast proliferation and differentiation. J Cell Mol Med. 2012;16(5):961–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.

    Article  CAS  PubMed  Google Scholar 

  104. Ghazizadeh Z, et al. Transient activation of reprogramming transcription factors using protein transduction facilitates conversion of human fibroblasts toward cardiomyocyte-like cells. Mol Biotechnol. 2017;59(6):207–20.

    Article  CAS  PubMed  Google Scholar 

  105. Braam SR, et al. Inhibition of ROCK improves survival of human embryonic stem cell-derived cardiomyocytes after dissociation. Ann N Y Acad Sci. 2010;1188:52–7.

    Article  CAS  PubMed  Google Scholar 

  106. Cagavi E, et al. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation. PLoS One. 2014;9(12):e110752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Cai CL, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5(6):877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Degeorge BR Jr, et al. BMP-2 and FGF-2 synergistically facilitate adoption of a cardiac phenotype in somatic bone marrow c-kit+/Sca-1+ stem cells. Clin Transl Sci. 2008;1(2):116–25.

    Article  CAS  PubMed  Google Scholar 

  109. Hao J, et al. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One. 2008;3(8):e2904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Serpooshan V, et al. Nkx2.5+cardiomyoblasts contribute to cardiomyogenesis in the neonatal heart. Sci Rep. 2017;7(7):12590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Bax NA, et al. Matrix production and remodeling capacity of cardiomyocyte progenitor cells during in vitro differentiation. J Mol Cell Cardiol. 2012;53(4):497–508.

    Article  CAS  PubMed  Google Scholar 

  112. Fan D, et al. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hanson KP, et al. Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A. 2013;19(9–10):1132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lindsey ML, et al. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol. 2015;66(12):1364–74.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Suhaeri M, et al. Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment. Tissue Eng Part A. 2015;21(11–12):1940–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ungerleider JL, et al. Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods. 2015;84:53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123(2):255–78.

    Article  CAS  PubMed  Google Scholar 

  118. Nian M, et al. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004;94(12):1543–53.

    Article  CAS  PubMed  Google Scholar 

  119. Diamantides N, et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication. 2017;9(3):034102.

    Article  PubMed  CAS  Google Scholar 

  120. Duong H, Wu B, Tawil B. Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen-thrombin compositions and by extrinsic cellular activity. Tissue Eng Part A. 2009;15(7):1865–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaiser NJ, Coulombe KLK. Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration. Biomed Mater. 2015;10(3):034003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Throm Quinlan AM, et al. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS One. 2011;6(8):e23272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee S, et al. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials. 2017;131:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lee JP, et al. N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels. Biomaterials. 2016;102:268–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Serpooshan V, et al. Chapter 8 – 4D printing of actuating cardiac tissue. In: Al’Aref SJ, et al., editors. 3D printing applications in cardiovascular medicine. Boston: Academic; 2018. p. 153–62.

    Chapter  Google Scholar 

  126. Wei K, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gao L, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res. 2017;120(8):1318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Giacomelli E, et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development. 2017;144(6):1008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pati F, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  Google Scholar 

  131. Weissman IL. Normal and neoplastic stem cells. Novartis Found Symp. 2005;265:35–50; discussion 50–4, 92–7

    PubMed  Google Scholar 

  132. Knappe N, et al. Directed dedifferentiation using partial reprogramming induces invasive phenotype in melanoma cells. Stem Cells. 2016;34(4):832–46.

    Article  CAS  PubMed  Google Scholar 

  133. Clement F, et al. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig. 2017;4:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Serpooshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomov, M.L., Theus, A., Sarasani, R., Chen, H., Serpooshan, V. (2019). 3D Bioprinting of Cardiovascular Tissue Constructs: Cardiac Bioinks. In: Serpooshan, V., Wu, S. (eds) Cardiovascular Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-20047-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20047-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20046-6

  • Online ISBN: 978-3-030-20047-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics