Skip to main content

Bone Repair and Regeneration Are Regulated by the Wnt Signaling Pathway

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

The Wnt signaling pathway is central to a large number of diverse cellular processes during embryological development, including those involved in the formation of bone and cartilage. Wnt signaling continues to play a critical role in the homeostasis, repair, and regeneration of bone in adults. Imbalances in this highly conserved and complex system contribute to a number of diseases, including impaired bone healing, autoimmune disease, and cancer. Critical-sized skeletal defects represent a major challenge to the reconstructive surgeon and are often associated with significant morbidity. The Wnt pathway is an attractive therapeutic target with potential to directly modulate stem cells responsible for skeletal tissue regeneration. Recent research indicates that Wnt ligands are able to promote bone growth, suggesting that Wnt factors could be used to stimulate bone healing of nonunions and large bony defects. This chapter explores the essential role of the Wnt pathway in bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher JN, Peretti GM, Scotti C. Stem cells for bone regeneration: from cell-based therapies to decellularised engineered extracellular matrices. Stem Cells Int. 2016;2016:9352598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14:179–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Victoria G, Petrisor B, Drew B, Dick D. Bone stimulation for fracture healing: what’s all the fuss? Indian J Orthop. 2009;43:117–20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res. 1999;14:1805–15.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M, Chen W. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed). 2014;19:379–407.

    Article  CAS  Google Scholar 

  7. Chen T, Li J, Córdova LA, Liu B, Mouraret S, Sun Q, Salmon B, Helms J. A WNT protein therapeutic improves the bone-forming capacity of autografts from aged animals. Sci Rep. 2018;8:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Secreto FJ, Hoeppner LH, Westendorf JJ. Wnt signaling during fracture repair. Curr Osteoporos Rep. 2009;7:64–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ingber DE, Levin M. What lies at the interface of regenerative medicine and developmental biology? Development. 2007;134:2541–7.

    Article  CAS  PubMed  Google Scholar 

  10. Gadjanski I, Spiller K, Vunjak-Novakovic G. Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem Cell Rev. 2012;8:863–81.

    Article  CAS  PubMed Central  Google Scholar 

  11. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;111:45–54.

    Article  Google Scholar 

  12. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cameron JA, Milner DJ, Lee JS, Cheng J, Fang NX, Jasiuk IM. Employing the biology of successful fracture repair to heal critical size bone defects. Curr Top Microbiol Immunol. 2013;367:113–32.

    PubMed  Google Scholar 

  14. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res. 2017;35:213–23.

    Article  PubMed  Google Scholar 

  16. Scammell BE, Roach HI. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes. J Bone Miner Res. 1996;11:737–45.

    Article  CAS  PubMed  Google Scholar 

  17. Panetta NJ, Gupta DM, Longaker MT. Bone regeneration and repair. Curr Stem Cell Res Ther. 2010;5:122–8.

    Article  CAS  PubMed  Google Scholar 

  18. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shi J, Chi S, Xue J, Yang J, Li F, Liu X. Emerging role and therapeutic implication of Wnt signaling pathways in autoimmune diseases. J Immunol Res. 2016;2016:9392132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu H, Liu Q, Zhou X, Huang Y, Zhang Z. Genome editing of Wnt-1, a gene associated with segmentation, via CRISPR/Cas9 in the pine caterpillar moth, Dendrolimus punctatus. Front Physiol. 2016;17:666.

    Google Scholar 

  21. Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis. 2015;11:95–104.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verheyen EM, Gottardi CJ. Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn. 2010;239:34–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Geetha-Loganathan P, Nimmagadda S, Scaal M. Wnt signaling in limb organogenesis. Organogenesis. 2008;4:109–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 2005;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu M, Herman MAA. A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Dev Biol. 2006;293:316–29.

    Article  CAS  PubMed  Google Scholar 

  26. Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci. 2002;115:3977–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lu D, Carson DA. Spiperone enhances intracellular calcium level and inhibits the Wnt signaling pathway. BMC Pharmacol. 2009;9:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kestler HA, Kuhl M. From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci. 2008;363:1333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  CAS  PubMed  Google Scholar 

  30. Choi HJ, Park H, Lee HW, Kwon YG. The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis. IUBMB Life. 2012;64:724–31.

    Article  CAS  PubMed  Google Scholar 

  31. Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/beta-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. Mol Cell Ther. 2015;3:1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  33. Cong F, Schweizer L, Chamorro M, Varmus H. Requirement for a nuclear function of beta-catenin in Wnt signaling. Mol Cell Biol. 2003;23:8462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis. 2012;33:483–91.

    Article  CAS  PubMed  Google Scholar 

  35. Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gao C, Xiao G, Hu J. Regulation of Wnt/beta-catenin signaling by posttranslational modifications. Cell Biosci. 2014;4:3.

    Article  CAS  Google Scholar 

  37. Mohammed MK, et al. Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 2016;3:11–40.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tauriello DV, Maurice MM. The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle. 2010;9:3700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem J. 2010;427:1–17.

    Article  CAS  PubMed  Google Scholar 

  40. Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 2013;19:634–64.

    Article  CAS  PubMed  Google Scholar 

  41. Quarto N, Wan DC, Kwan MD, Panetta NJ, Li S, Longaker MT. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones. J Bone Miner Res. 2010;25:1680–94.

    CAS  PubMed  Google Scholar 

  42. MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4:a007880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gomez-Orte E, Saenz-Narciso B, Moreno S, Cabello J. Multiple functions of the noncanonical Wnt pathway. Trends Genet. 2013;29:545–53.

    Article  CAS  PubMed  Google Scholar 

  44. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000;16:279–83.

    Article  CAS  PubMed  Google Scholar 

  45. De A. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2011;43:745–56.

    Article  CAS  Google Scholar 

  46. Garcia-Castro J, Trigueros C, Madrenas J, Pérez-Simón JA, Rodriguez R, Menendez P. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med. 2008;12:2552–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int. 2013;2013:496218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84:893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 2013;5:13–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Regard JB, Zhong Z, Williams BO, Yang Y. Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012;4:a007997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, Nusse R, Helms JA. Wnt proteins promote bone regeneration. Sci Transl Med. 2010;2:29ra30.

    Article  PubMed  CAS  Google Scholar 

  53. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35:e00191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Case N, Rubin J. Beta-catenin—a supporting role in the skeleton. J Cell Biochem. 2010;110:545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007;282:14515–24.

    Article  CAS  PubMed  Google Scholar 

  56. Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY, Takeyama K, Nakamura T, Mezaki Y, Takezawa S, Yogiashi Y, Kitagawa H, Yamada G, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol. 2007;9:1273–85.

    Article  CAS  PubMed  Google Scholar 

  57. Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation J Biomed Sci Eng. 2013;6:32–52.

    PubMed  Google Scholar 

  58. Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, et al. BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med. 2009;13:2448–64.

    Article  PubMed  Google Scholar 

  59. Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, Bi Y, He TC. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest. 2016;96:116–36.

    Article  CAS  PubMed  Google Scholar 

  60. Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112:3491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang M, Yan Y, Lim YB, Tang D, Xie R, Chen A, Tai P, Harris SE, Xing L, Qin YX, Chen D. BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem. 2009;108:896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens). 2007;6:279–94.

    Article  Google Scholar 

  63. Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem. 2006;281:38276–84.

    Article  CAS  PubMed  Google Scholar 

  64. Johnson ML. LRP5 and bone mass regulation: where are we now? Bonekey Rep. 2012;1:1.1.

    Article  Google Scholar 

  65. Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, Yerges-Armstrong LM, Lehtimäki T, Bergström U, Kähönen M, Leo PJ, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8:e1002745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shahi M, Peymani A, Sahmani M. Regulation of bone metabolism. Rep Biochem Mol Biol. 2017;5:73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12:3068–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu H, Duan J, Ning D, Li J, Liu R, Yang R, Jiang JX, Shang P. Role of Wnt signaling in fracture healing. BMB Rep. 2014;47:666–72.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bao Q, Chen S, Qin H, Feng J, Liu H, Liu D, Li A, Shen Y, Zhao Y, Li J, Zong Z. An appropriate Wnt/beta-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Sci Rep. 2017;7:695.

    Article  CAS  Google Scholar 

  70. Komatsu DE, Mary MN, Schroeder RJ, Robling AG, Turner CH, Warden SJ. Modulation of Wnt signaling influences fracture repair. J Orthop Res. 2010;28:928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhong Z, Ethen NJ, Williams BO. WNT signaling in bone development and homeostasis. Wiley Interdiscip Rev Dev Biol. 2014;3:489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang W, Xue D, Yin H, Wang S, Li C, Chen E, Hu D, Tao Y, Yu J, Zheng Q, Gao X, Pan Z. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/beta-catenin signaling pathway. Sci Rep. 2016;6:27622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009;113:517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71–88.

    Article  CAS  PubMed  Google Scholar 

  76. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013;2013:684736.

    Google Scholar 

  78. Gao Y, Huang E, Zhang H, Wang J, Wu N, Chen X, Wang N, Wen S, Nan G, Deng F, Liao Z, Wu D, Zhang B, Zhang J, Haydon RC, Luu HH, Shi LL, He TC. Crosstalk between Wnt/beta-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS One. 2013;8:e82436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hiyama A, Yokoyama K, Nukaga T, Sakai D, Mochida J. A complex interaction between Wnt signaling and TNF-alpha in nucleus pulposus cells. Arthritis Res Ther. 2013;15:R189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Baum R, Gravallese EM. Impact of inflammation on the osteoblast in rheumatic diseases. Curr Osteoporos Rep. 2014;12:9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wehmeyer C, Pap T, Buckley CD, Naylor AJ. The role of stromal cells in inflammatory bone loss. Clin Exp Immunol. 2017;189:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD, Oldham MC, Martens LH, Zhou P, Farese RV Jr, Geschwind DH. Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron. 2011;71:1030–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao YP, Tian QY, Frenkel S, Liu CJ. The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials. 2013;34:6412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang C, Liao H, Cao Z. Role of Osterix and MicroRNAs in bone formation and tooth development. Med Sci Monit. 2016;22:2934–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep. 2015;48:319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011;108:9863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal. 2015;27:1380–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo D, Li Q, Lv Q, Wei Q, Cao S, Gu J. MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation. PLoS One. 2014;9:e91354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26:1953–63.

    Article  CAS  PubMed  Google Scholar 

  90. Buser D, Dula K, Lang NP, Nyman S. Long-term stability of osseointegrated implants in bone regenerated with the membrane technique. 5-year results of a prospective study with 12 implants. Clin Oral Implants Res. 1996;7:175–83.

    Article  CAS  PubMed  Google Scholar 

  91. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4:1268–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:18.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hunter JD 3rd, Cannon JA. Biomaterials: so many choices, so little time. What are the differences? Clin Colon Rectal Surg. 2014;27:134–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Di Marco M, Shamsuddin S, Razak KA, Aziz AA, Devaux C, Borghi E, Levy L, Sadun C. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. Int J Nanomedicine. 2010;5:37–49.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houschyar, K.S. et al. (2019). Bone Repair and Regeneration Are Regulated by the Wnt Signaling Pathway. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19962-3_17

Download citation

Publish with us

Policies and ethics