Skip to main content

Automating Autoencoder Architecture Configuration: An Evolutionary Approach

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Abstract

Learning from existing data allows building models able to classify patterns, infer association rules, predict future values in time series and much more. Choosing the right features is a vital step of the learning process, specially while dealing with high-dimensional spaces. Autoencoders (AEs) have shown ability to conduct manifold learning, compressing the original feature space without losing useful information. However, there is no optimal AE architecture for all datasets. In this paper we show how to use evolutionary approaches to automate AE architecture configuration. First, a coding to embed the AE configuration in a chromosome is proposed. Then, two evolutionary alternatives are compared against exhaustive search. The results show the great superiority of the evolutionary way.

This work is supported by the Spanish National Research Project TIN2015-68454-R.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 PC, CPU Core i5, 16 GB RAM, GPU Nvidia RTX-2080.

  2. 2.

    GNU/Linux, Tensorflow and Keras.

  3. 3.

    Measured by the reconstruction mean squared error expressed as percentage.

References

  1. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1, 1–23 (1993)

    Article  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Cayton, L.: Algorithms for manifold learning. Technical report, University of California at San Diego (2005)

    Google Scholar 

  4. Charte, D., Charte, F., García, S., Herrera, F.: A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations. Prog. Artif. Intell. 8(1), 1–14 (2018). https://doi.org/10.1007/s13748-018-00167-7

  5. Charte, D., Charte, F., García, S., del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fusion 44, 78–96 (2018)

    Article  Google Scholar 

  6. Charte, D., Herrera, F., Charte, F.: Ruta: implementations of neural autoencoders in R. Knowl.-Based Syst. 174, 4–8 (2019, in press). https://doi.org/10.1016/j.knosys.2019.01.014

  7. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  8. Freitas, A.A.: A review of evolutionary algorithms for data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 371–400. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_19

    Chapter  Google Scholar 

  9. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. Neurocomputing 64, 107–117 (2005)

    Article  Google Scholar 

  10. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10247-4

    Book  Google Scholar 

  11. Guyon, I., Elisseeff, A.: An introduction to feature extraction. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction, pp. 1–25. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35488-8_1

    Chapter  Google Scholar 

  12. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, University of Waikato Hamilton (1999)

    Google Scholar 

  13. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Article  Google Scholar 

  14. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York (2007). https://doi.org/10.1007/978-0-387-39351-3

    Book  MATH  Google Scholar 

  15. Martinez-Murcia, F.J., et al.: Deep convolutional autoencoders vs PCA in a highly-unbalanced Parkinson’s disease dataset: a DaTSCAN study. In: Graña, M., et al. (eds.) SOCO’18-CISIS’18-ICEUTE’18 2018. AISC, vol. 771, pp. 47–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_5

    Chapter  Google Scholar 

  16. Peng, H., Long, F., Ding, C.H.Q.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  17. Segovia, F., Górriz, J., Ramírez, J., Martinez-Murcia, F., García-Pérez, M.: Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders. Logic J. IGPL 26(6), 618–628 (2018)

    MathSciNet  Google Scholar 

  18. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, p. 4. ACM (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Charte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charte, F., Rivera, A.J., Martínez, F., del Jesus, M.J. (2019). Automating Autoencoder Architecture Configuration: An Evolutionary Approach. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics