Skip to main content

Molecular Logic: Brief Introduction and Some Philosophical Considerations

  • Conference paper
  • First Online:
Molecular Logic and Computational Synthetic Biology (MLCSB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11415))

  • 320 Accesses

Abstract

In the present article a brief historical and systematic introduction to the field of molecular logic are proposed. Some relevant philosophical consequences derived from the technical treatment of this topic are also exposed. These consequences are made explicit in three fundamental questions. Some of the proposed methods for the representation of the intracellular molecular dynamics are also presented and the advantages and limitations that the different methods exhibit when modeling natural biological circuits are evaluated. The Boolean approach to molecular logic is considered with special attention in this article, emphasizing that “logic gates” have proven to be functionally appropriate for analyzing experimental information, however, they present limitations to capture complex biological processes. In relation to this last point, the problem presented by the modeling of continuous variables through discrete systems is studied in depth. It is explained then the need to have adequate logic to the phenomenon and its characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, M., Mettetal, J.T., Van Oudenaarden, A.: Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40(4), 471 (2008)

    Article  Google Scholar 

  2. Anderson, J.C., Voigt, C.A., Arkin, A.P.: Environmental signal integration by a modular and gate. Mol. Syst. Biol. 3(1), 133 (2007)

    Article  Google Scholar 

  3. Ausländer, S., Ausländer, D., Müller, M., Wieland, M., Fussenegger, M.: Programmable single-cell mammalian biocomputers. Nature 487(7405), 123 (2012)

    Article  Google Scholar 

  4. Benenson, Y.: Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13(7), 455 (2012)

    Article  Google Scholar 

  5. Beziau, J.Y.: Logica universalis: towards a general theory of logic. Springer (2007). https://doi.org/10.1007/978-3-7643-8354-1

  6. Carell, T.: Molecular computing: DNA as a logic operator. Nature 469(7328), 45 (2011)

    Article  Google Scholar 

  7. Chaouiya, C.: Petri net modelling of biological networks. Briefings Bioinf. 8(4), 210–219 (2007)

    Article  Google Scholar 

  8. Chuang, H.Y., Hofree, M., Ideker, T.: A decade of systems biology. Ann. Rev. Cell Dev. Biol. 26, 721–744 (2010)

    Article  Google Scholar 

  9. De Silva, A.P.: Molecular Logic-based Computation. Royal Society of Chemistry, Cambridge (2016)

    Google Scholar 

  10. Figueiredo, D.: Differential dynamic logic and applications. Master’s thesis, University of Aveiro (2015)

    Google Scholar 

  11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 99–217. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-017-0456-4_2

  12. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(6761 suppl.), C47 (1999)

    Article  Google Scholar 

  13. Hood, L.: Systems biology: integrating technology, biology, and computation. Mech. Ageing Dev. 124(1), 9–16 (2003)

    Article  Google Scholar 

  14. Husic, B.E., Pande, V.S.: Markov state models: from an art to a science. J. Am. Chem. Soc. 140(7), 2386–2396 (2018)

    Article  Google Scholar 

  15. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Ann. Rev. Genomics Hum. Genet. 2(1), 343–372 (2001)

    Article  Google Scholar 

  16. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3(3), 318–356 (1961)

    Article  Google Scholar 

  17. Jiménez, M.d.J.P., Caparrini, F.S.: Máquinas moleculares basadas en ADN. No. 2, Universidad de Sevilla (2003)

    Google Scholar 

  18. Kaern, M., Blake, W.J., Collins, J.J.: The engineering of gene regulatory networks. Ann. Rev. Biomed. Eng. 5(1), 179–206 (2003)

    Article  Google Scholar 

  19. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings, trees and arrays. In: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, pp. 125–136. ACM (1972)

    Google Scholar 

  20. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  21. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  22. Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., Mardis, E.R.: The next-generation sequencing revolution and its impact on genomics. Cell 155(1), 27–38 (2013)

    Article  Google Scholar 

  23. Kötter, P., Weigand, J.E., Meyer, B., Entian, K.D., Suess, B.: A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res. 37(18), e120–e120 (2009)

    Article  Google Scholar 

  24. Madeira, A.L.C.: Foundations and techniques for software reconfigurability (2013)

    Google Scholar 

  25. Magnani, L.: Naturalizing logic: errors of reasoning vindicated: logic reapproaches cognitive science. J. Appl. Logic 13(1), 13–36 (2015)

    Article  MathSciNet  Google Scholar 

  26. Marchisio, M.A.: In silico design and in vivo implementation of yeast gene boolean gates. J. Biol. Eng. 8(1), 6 (2014)

    Article  Google Scholar 

  27. Marchisio, M.A., Rudolf, F.: Synthetic biosensing systems. Int. J. Biochem. Cell Biol. 43(3), 310–319 (2011)

    Article  Google Scholar 

  28. Marx, M., Venema, Y.: Local variations on a loose theme: modal logic and decidability. In: Finite Model Theory and Its Applications, pp. 371–429. Springer, Berlin (2007). https://doi.org/10.1007/3-540-68804-8_7

  29. Needham, C.J., Bradford, J.R., Bulpitt, A.J., Westhead, D.R.: A primer on learning in bayesian networks for computational biology. PLoS Comput. Biol. 3(8), e129 (2007)

    Article  Google Scholar 

  30. Nelson, D.L., Lehninger, A.L., Cox, M.M.: Lehninger Principles of Biochemistry. Macmillan (2008)

    Google Scholar 

  31. Ng, A., Bursteinas, B., Gao, Q., Mollison, E., Zvelebil, M.: Resources for integrative systems biology: from data through databases to networks and dynamic system models. Briefings Bioinf. 7(4), 318–330 (2006)

    Article  Google Scholar 

  32. Petri, C.A.: Kommunikation mit automaten (1962)

    Google Scholar 

  33. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems For Complex Dynamics. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14509-4

    Book  MATH  Google Scholar 

  34. Raj, A., van Oudenaarden, A.: Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2), 216–226 (2008)

    Article  Google Scholar 

  35. Regot, S., et al.: Distributed biological computation with multicellular engineered networks. Nature 469(7329), 207 (2011)

    Article  Google Scholar 

  36. Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss, R., Benenson, Y.: A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25(7), 795 (2007)

    Article  Google Scholar 

  37. Rual, J.F.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062), 1173 (2005)

    Article  Google Scholar 

  38. Sachs, K., Gifford, D., Jaakkola, T., Sorger, P., Lauffenburger, D.A.: Bayesian network approach to cell signaling pathway modeling. Sci. STKE 2002(148), pe38 (2002)

    Google Scholar 

  39. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  40. de Silva, P.A., Gunaratne, N.H., McCoy, C.P.: A molecular photoionic and gate based on fluorescent signalling. Nature 364(6432), 42 (1993)

    Article  Google Scholar 

  41. Silva-Rocha, R., de Lorenzo, V.: Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Lett. 582(8), 1237–1244 (2008)

    Article  Google Scholar 

  42. Smart, J.C.: 1963, Philosophy and Scientific Realism (1970)

    Google Scholar 

  43. Steggles, L.J., Banks, R., Shaw, O., Wipat, A.: Qualitatively modelling andanalysing genetic regulatory networks: a petri net approach. Bioinformatics 23(3), 336–343 (2006)

    Article  Google Scholar 

  44. Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using genetically encoded NOR gates and chemical wires. Nature 469(7329), 212 (2011)

    Article  Google Scholar 

  45. Varela, F., Thompson, E., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Cambridge (1991)

    Book  Google Scholar 

  46. Win, M.N., Smolke, C.D.: Higher-order cellular information processing with synthetic RNA devices. Science 322(5900), 456–460 (2008)

    Article  Google Scholar 

  47. Woodcock, C.L.: Chromatin architecture. Curr. Opin. Struct. Biol. 16(2), 213–220 (2006)

    Article  Google Scholar 

  48. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., Benenson, Y.: Multi-input rnai-based logic circuit for identification of specific cancer cells. Science 333(6047), 1307–1311 (2011)

    Article  Google Scholar 

  49. Zou, M., Conzen, S.D.: A new dynamic bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2004)

    Article  Google Scholar 

  50. Marchisio, M.A., Stelling, J.: Computational design of synthetic gene circuits with composable parts. Bioinformatics 24(17), 1903–1910 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Fuentes Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bravo, C.F., Bravo, P.F. (2019). Molecular Logic: Brief Introduction and Some Philosophical Considerations. In: Chaves, M., Martins, M. (eds) Molecular Logic and Computational Synthetic Biology. MLCSB 2018. Lecture Notes in Computer Science(), vol 11415. Springer, Cham. https://doi.org/10.1007/978-3-030-19432-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19432-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19431-4

  • Online ISBN: 978-3-030-19432-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics