Skip to main content

Numbers of Vertebrae in Hominoid Evolution

  • Chapter
  • First Online:
Spinal Evolution

Abstract

Vertebral formulae, the combination of regional numbers of vertebrae making up the bony spine, vary across vertebrates and within hominoid primates. Reconstructing the ancestral vertebral formulae throughout hominoid evolution has proved a challenge due to limited fossil evidence and disagreement among researchers. Proposed “long-backed” and “short-backed” ancestors have implications for the evolution of bipedalism and human evolutionary history generally. Here, we analyze a large dataset of hominoid vertebral formulae, including previously unstudied species and subspecies. We find more variation within and between species than expected, particularly in hylobatids (gibbons or lesser apes) and in gorilla and chimpanzee subspecies. Our results suggest that combined thoracic and lumbar numbers of vertebrae are somewhat phylogenetically structured, with outgroup taxa (two species of Old World monkeys, or cercopithecoids) retaining the primitive number of 19 thoracolumbar vertebrae, hylobatids generally possessing 18 thoracolumbar vertebrae, and hominids (great apes and humans) having 17 or 16 thoracolumbar vertebrae. When compared to cercopithecoids, and to putative stem hominoids, extant hominoids show evidence for homeotic change at both the lumbosacral (e.g., decrease in lumbar vertebrae; increase in sacral segments) and in the position of the transitional vertebrae. Homeotic changes are probably also responsible for the differences between African apes and modern humans, with differences in the number of thoracic and lumbar within a 17-segment thoracolumbar framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abitbol MM (1987) Evolution of the sacrum in hominoids. Am J Phys Anthropol 74:65–81

    Article  CAS  PubMed  Google Scholar 

  • Benade MM (1990) Thoracic and lumbar vertebrae of African hominids ancient and recent: morphological and functional aspects with special reference to upright posture. Master’s Thesis, University of the Witwatersrand

    Google Scholar 

  • Benton RS (1967) Morphological evidence for adaptations within the epaxial region of the primates. In: van der Hoeven F (ed) The baboon in medical research, vol II. University of Texas Press, Austin, TX, pp 201–216

    Google Scholar 

  • Bi S, Wang Y, Guan J, Sheng X, Meng J (2014) Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 514:579–584

    Article  CAS  PubMed  Google Scholar 

  • Bramble DM, Lieberman DE (2004) Endurance running and the evolution of Homo. Nature 432:345–352

    Article  CAS  PubMed  Google Scholar 

  • Carapuço M, Nóvoa A, Bobola N, Mallo M (2005) Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 19:2116–2121

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone L, Alan Harris R, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B, Anaclerio F, Archidiacono N, Baker C, Barrell D, Batzer MA, Beal K, Blancher A, Bohrson CL, Brameier M, Campbell MS, Capozzi O, Casola C, Chiatante G, Cree A, Damert A, de Jong PJ, Dumas L, Fernandez-Callejo M, Flicek P, Fuchs NV, Gut I, Gut M, Hahn MW, Hernandez-Rodriguez J, Hillier LW, Hubley R, Ianc B, Izsvák Z, Jablonski NG, Johnstone LM, Karimpour-Fard A, Konkel MK, Kostka D, Lazar NH, Lee SL, Lewis LR, Liu Y, Locke DP, Mallick S, Mendez FL, Muffato M, Nazareth LV, Nevonen KA, O’Bleness M, Ochis C, Odom DT, Pollard KS, Quilez J, Reich D, Rocchi M, Schumann GG, Searle S, Sikela JM, Skollar G, Smit A, Sonmez K, Hallers B, Terhune E, Thomas GWC, Ullmer B, Ventura M, Walker JA, Wall JD, Walter L, Ward MC, Wheelan SJ, Whelan CW, White S, Wilhelm LJ, Woerner AE, Yandell M, Zhu B, Hammer MF, Marques-Bonet T, Eichler EE, Fulton L, Fronick C, Muzny DM, Warren WC, Worley KC, Rogers J, Wilson RK, Gibbs RA (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo ER, Hsu C, Mair RW, Lieberman DE (2017) Testing biomechanical models of human lumbar lordosis variability. Am J Phys Anthropol 163:110–121

    Article  PubMed  Google Scholar 

  • Chen Y-C, Roos C, Inoue-Murayama M, Inou E, Shih C-C, Pei KJ-C, Vigilant L (2013) Inferring the evolutionary histories of divergences in Hylobates and Nomascus gibbons through multilocus sequence data. BMC Evol Biol 13:82

    Article  Google Scholar 

  • Clauser D (1980) Functional and comparative anatomy of the primate spinal column: some locomotor and postural adaptations. PhD Dissertation, University of Wisconsin-Milwaukee

    Google Scholar 

  • Dunn RH, Tocheri MW, Orr CM, Jungers WL (2014) Ecological divergence and talar morphology in gorillas. Am J Phys Anthropol 153:526–541

    Article  PubMed  Google Scholar 

  • Erikson G (1963) Brachiation in New World monkeys and in anthropoid apes. Symp Zool Soc Lond 10:135–163

    Google Scholar 

  • Fulwood EL, O’Meara BC (2014) A phylogenetic approach to the evolution of anthropoid lumbar number. Am J Phys Anthropol 153(S58):123

    Google Scholar 

  • Galis F, Carrier DR, van Alphen J, van der Mije SD, Van Dooren TJM, Metz JAJ, ten Broek CMA (2014) Fast running restricts evolutionary change of the vertebral column in mammals. Proc Natl Acad Sci U S A 111:11401–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Olivencia A, Been E (2019) The spine of late Homo. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 185–212

    Google Scholar 

  • Gómez-Olivencia A, Gómez-Robles A (2016) Evolution of the vertebral formula in hominoids: insights from ancestral state reconstruction approaches. Proc Eur Soc Study Human Evol 5:109

    Google Scholar 

  • Haeusler M, Martelli SA, Boeni T (2002) Vertebrae numbers of the early hominid lumbar spine. J Hum Evol 43:621–643

    Article  PubMed  Google Scholar 

  • Haeusler M, Schiess R, Boeni T (2011) New vertebral material point to modern bauplan of the Nariokotome Homo erectus skeleton. J Hum Evol 61:575–582

    Article  PubMed  Google Scholar 

  • Haeusler M, Regula S, Boeni T (2012) Modern or distinct axial bauplan in early hominins? A reply to Williams (2012). J Hum Evol 63:557–559

    Article  Google Scholar 

  • Haeusler M, Frater N, Bonneau N (2014) The transition from thoracic to lumbar facet joint orientation at T11: functional implications of a more cranially positioned transitional vertebra in early hominids. Am J Phys Anthropol 153(S58):133

    Google Scholar 

  • Harrison T (1986) A reassessment of the phylogenetic relationships of Oreopithecus bambolii Gervais. J Hum Evol 15:541–583

    Article  Google Scholar 

  • Hey J (2010) The divergence of chimpanzee subspecies and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol Biol Evol 27:921–933

    Article  CAS  PubMed  Google Scholar 

  • Inouye SE (2003) Intraspecific and ontogenetic variation in the forelimb morphology of Gorilla. In: Taylor AB, Goldsmith ML (eds) Gorilla biology: a multidisciplinary perspective. Cambridge University Press, Cambridge, pp 194–235

    Google Scholar 

  • Ishida H, Kunimatsu Y, Takano T, Nakano Y, Nakatsukasa M (2004) Nacholapithecus skeleton from the Middle Miocene of Kenya. J Hum Evol 46:69–103

    Article  PubMed  Google Scholar 

  • Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang JP, Georgi JA (2002) The earliest known eutherian mammal. Nature 416:816–822

    Article  CAS  PubMed  Google Scholar 

  • Jungers WL (1984) Scaling of the hominoid locomotor skeleton with special reference to lesser apes. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes: evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 146–169

    Google Scholar 

  • Keith A (1902) The extent to which the posterior segments of the body have been transmuted and suppressed in the evolution of man and allied primates. J Anat Physiol 37:18–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SK, Carbone L, Becquet C, Mootnick AR, Li DJ, de Jong PJ, Wall JD (2011) Patterns of genetic variation within and between gibbon species. Mol Biol Evol 28:2211–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latimer B, Ward CV (1993) The thoracic and lumbar vertebrae. In: Walker A, Leakey R (eds) The Nariokotome Homo erectus skeleton. Harvard University Press, Cambridge, pp 266–293

    Chapter  Google Scholar 

  • Lovejoy CO (2005) The natural history of human gait and posture Part 1. Spine and pelvis. Gait Posture 21:95–112

    PubMed  Google Scholar 

  • Lovejoy CO, McCollum MA (2010) Spinopelvic pathways to bipedality: why no hominids ever relied on a bent-hip-bent-knee gait. Philos Trans R Soc B 365:3289–3299

    Article  Google Scholar 

  • Lovejoy CO, Suwa G, Simpson SW, Matternes JH, White TD (2009) The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science 326:100–106

    CAS  PubMed  Google Scholar 

  • Machnicki AL, Lovejoy CO, Reno PL (2016) Developmental identity versus typology: Lucy has only four sacral segments. Am J Phys Anthropol 160:729–739

    Article  PubMed  Google Scholar 

  • Manica A, Amos W, Balloux F, Hanihara T (2007) The effect of ancient population bottlenecks on human phenotypic variation. Nature 448:346–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martelli S (2019) The modern and fossil hominoid spinal ontogeny. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 246–282

    Google Scholar 

  • McCollum MA, Rosenman BA, Suwa G, Meindl RS, Lovejoy CO (2010) The vertebral formula of the last common ancestor of African apes and humans. J Exp Zool 314B:123–134

    CAS  Google Scholar 

  • Meyer MR, Williams SA (2019) The spine of early Pleistocene Homo. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 153–184

    Google Scholar 

  • Meyer MR, Williams SA, Smith MP, Sawyer GJ (2015) Lucy’s back: reassessment of fossils associated with the A.L. 288-1 vertebral column. J Hum Evol 85:174–180

    Article  PubMed  Google Scholar 

  • Nakatsukasa M, Kunimatsu Y (2009) Nacholapithecus and its importance for understanding hominoid evolution. Evol Anthropol 18:103–119

    Article  Google Scholar 

  • Nakatsukasa M, Hayama S, Preuschoft H (1995) Postcranial skeleton of a macaque trained for bipedal standing and walking and implications for functional adaptation. Folia Primatol 64:1–29

    Article  CAS  Google Scholar 

  • Narita Y, Kuratani S (2005) Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J Exp Zool 304B:91–106

    Article  Google Scholar 

  • Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, Groves C, Pybus M, Sonay TB, Roos C, Lameira AR, Wich SA, Askew J, Davila-Ross M, Fredriksson G, de Valles G, Casals F, Prado-Martinez J, Goossens B, Verschoor EJ, Warren KS, Singleton I, Marques DA, Pamungkas J, Perwitasari-Farajallah D, Rianti P, Tuuga A, Gut IG, Gut M, Orozco-terWengel P, van Schaik CP, Bertranpetit J, Anisimova M, Scally A, Marques-Bonet T, Meijaard E, Krützen M (2017) Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr Biol 27:3487–3498

    Article  CAS  PubMed  Google Scholar 

  • Pilbeam D (2004) The anthropoid postcranial axial skeleton: comments on development, variation, and evolution. J Exp Zool 302:241–267

    Article  Google Scholar 

  • Pilbeam DR, Lieberman DE (2017) Reconstructing the last common ancestor of chimpanzees and humans. In: Muller MN, Wrangham RW, Pilbeam DR (eds) Chimpanzees and human evolution. The Belknap Press of Harvard University Press, Cambridge, pp 22–141

    Chapter  Google Scholar 

  • Pollock RA, Sreenath T, Ngo L, Bieberich CJ (1995) Gain of function mutations for paralogous Hox genes: implications for the evolution of Hox gene function. Proc Natl Acad Sci U S A 92:4492–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B, Veeramah KR, Woerner AE, O’Connor TD, Santpere G, Cagan A, Theunert C, Casals F, Laayouni H, Munch K, Hobolth A, Halager AE, Malig M, Hernandez-Rodriguez J, Hernando-Herraez I, Prüfer K, Pybus M, Johnstone L, Lachmann M, Alkan C, Twigg D, Petit N, Baker C, Hormozdiari F, Fernandez-Callejo M, Dabad M, Wilson ML, Stevison L, Camprubí C, Carvalho T, Ruiz-Herrera A, Vives L, Mele M, Abello T, Kondova I, Bontrop RE, Pusey A, Lankester F, Kiyang JA, Bergl RA, Lonsdorf E, Myers S, Ventura M, Gagneux P, Comas D, Siegismund H, Blanc J, Agueda-Calpena L, Gut M, Fulton L, Tishkoff SA, Mullikin JC, Wilson RK, Gut IG, Gonder MK, Ryder OA, Hahn BH, Navarro A, Akey JM, Bertranpetit J, Reich D, Mailund T, Schierup MH, Hvilsom C, Andrés AM, Wall JD, Bustamante CD, Hammer MF, Eichler EE, Marques-Bonet T (2013) Great ape genetic diversity and population history. Nature 499:471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuschoft H, Hayama S, Günther MM (1988) Curvature of the lumbar spine as a consequence of mechanical necessities in Japanese macaques trained for bipedalism. Folia Primatol 50:42–58

    Article  CAS  Google Scholar 

  • Robinson J (1972) Early hominid posture and locomotion. University of Chicago Press, Chicago

    Google Scholar 

  • Rockwell H, Evans FG, Pheasant HC (1938) The comparative morphology of the vertebrate spinal column. Its form as related to function. J Morphol 63:87–117

    Article  Google Scholar 

  • Russo GA, Williams SA (2015) Giant pandas (Carnivora: Ailuropoda melanoleuca) and living hominoids converge on lumbar vertebral adaptations to orthograde trunk posture. J Hum Evol 88:160–179

    Article  PubMed  Google Scholar 

  • Sanders WJ (1998) Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. J Hum Evol 34:249–302

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento EE (1994) Terrestrial traits in the hands and feet of gorillas. Am Mus Novit 309:1–56

    Google Scholar 

  • Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, Hobolth A, Lappalainen T, Mailund T, Marques-Bonet T, McCarthy S, Montgomery SH, Schwalie PC, Tang YA, Ward MC, Xue Y, Yngvadottir B, Alkan C, Andersen LN, Ayub Q, Ball EV, Beal K, Bradley BJ, Chen Y, Clee CM, Fitzgerald S, Graves TA, Gu Y, Heath P, Heger A, Karakoc E, Kolb-Kokocinski A, Laird GK, Lunter G, Meader S, Mort M, Mullikin JC, Munch K, O’Connor TD, Phillips AD, Prado-Martinez J, Rogers AS, Sajjadian S, Schmidt D, Shaw K, Simpson JT, Stenson PD, Turner DJ, Vigilant L, Vilella AJ, Whitener W, Zhu B, Cooper DN, de Jong P, Dermitzakis ET, Eichler EE, Flicek P, Goldman N, Mundy NI, Ning Z, Odom DT, Ponting CP, Quail MA, Ryder OA, Searle SM, Warren WC, Wilson RK, Schierup MH, Rogers J, Tyler-Smith C, Durbin R (2012) Insights into hominid evolution from the gorilla genome sequence. Nature 483:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder L, von Cramon-Taubadel N (2017) The evolution of hominoid cranial diversity: a quantitative genetic approach. Evolution 71-11:2634–2649

    Article  Google Scholar 

  • Schultz AH (1934) Some distinguishing characters of the mountain gorilla. J Mammal 15:51–61

    Article  Google Scholar 

  • Schultz AH (1960) Einige Beobachtungen und Maße am Skelett von Oreopithecus im Vergleich mit anderen catarrhinen Primaten. Z Morphol Anthropol 50:136–149

    Google Scholar 

  • Schultz AH (1961) Vertebral column and thorax. Primatologia 4:1–66

    Google Scholar 

  • Schultz AH, Straus WL (1945) The numbers of vertebrae in primates. Proc Am Philos Soc 89:601–626

    CAS  PubMed  Google Scholar 

  • Shapiro L (1993) Functional morphology of the vertebral column in primates. In: Gebo DL (ed) Postcranial adaptation in nonhuman primates. Northern Illinois University Press, Dekalb, pp 121–149

    Google Scholar 

  • Shapiro LJ, Demes B, Cooper J (2001) Lateral bending of the lumbar spine during quadrupedalism in strepsirhines. J Hum Evol 40:231–259

    Article  CAS  PubMed  Google Scholar 

  • Susanna I, Alba DM, Almécija S, Moyà-Solà S (2014) The vertebral remains of the late Miocene great ape Hispanopithecus laietanus from Can Llobateres 2 (Vallès-Penedès Basin, NE Iberian Peninsula). J Hum Evol 73:15–34

    Article  PubMed  Google Scholar 

  • Thompson NE, Almécija S (2017) The evolution of vertebral formulae in Hominoidea. J Hum Evol 110:18–36

    Article  PubMed  Google Scholar 

  • Thompson NE, Demes B, O’Neill MC, Holowka NB, Larson SG (2015) Surprising trunk rotational capabilities in chimpanzees and implications for bipedal walking proficiency in early hominins. Nat Commun 6:8416

    Article  CAS  PubMed  Google Scholar 

  • Tocheri MW, Solhan CR, Orr CM, Femiani J, Frohlich B, Groves CP, Harcourt-Smith WE, Richmond BG, Shoelson B, Jungers WL (2011) Ecological divergence and medial cuneiform morphology in gorillas. J Hum Evol 60:171–184

    Article  PubMed  Google Scholar 

  • Todd TW (1922) Numerical significance in the thoracicolumbar vertebrae of the Mammalia. Anat Rec 24:261–286

    Article  Google Scholar 

  • Toussaint M, Macho GA, Tobias PV, Patridge TC, Hughes AR (2003) The third partial skeleton of a late Pliocene hominin (Stw 431) from Sterkfontein, South Africa. S Afr J Sci 99:215–223

    Google Scholar 

  • Ward CV (1993) Torso morphology and locomotion in Proconsul nyanzae. Am J Phys Anthropol 92:291–328

    Article  CAS  PubMed  Google Scholar 

  • Ward CV, Nalley TK, Spoor F, Tafforeau P, Alemseged Z (2017) Thoracic vertebral count and thoracolumbar transition in Australopithecus afarensis. Proc Natl Acad Sci U S A 114:6000–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washburn SL (1963) Behavior and human evolution. In: Washburn SL (ed) Classification and human evolution. Aldine, Chicago

    Google Scholar 

  • Weaver TD (2014) Quantitative- and molecular-genetic differentiation in humans and chimpanzees: implications for the evolutionary processes underlying cranial diversification. Am J Phys Anthropol 154:615–620

    Article  PubMed  Google Scholar 

  • Weaver TD, Stringer CB (2014) Unconstrained cranial evolution in Neandertals and modern humans compared to common chimpanzees. Proc R Soc B 282:20151519

    Article  Google Scholar 

  • Welcker H (1881) Die neue anatomische Anstalt zu Halle durch einen Vortrag über Wirbelsäule und Becken eingeweiht von dem derzeitigen Director. Archiv für Anatomie und Physiologie (Anatomische Abtheilung). Jahrgang 1881:161–192

    Google Scholar 

  • Williams SA (2011) Evolution of the hominoid vertebral column. PhD Dissertation, University of Illinois, Urbana-Champaign

    Google Scholar 

  • Williams SA (2012a) Modern of distinct axial bauplan in early hominins? Comments on Haeusler et al. (2011). J Hum Evol 63:552–556

    Article  PubMed  Google Scholar 

  • Williams SA (2012b) Placement of the diaphragmatic vertebra in catarrhines: implications for the evolution of dorsostability in hominoids and bipedalism in hominins. Am J Phys Anthropol 148:111–122

    Article  PubMed  Google Scholar 

  • Williams SA (2012c) Variation in anthropoid vertebral formulae: implications for homology and homoplasy in hominoid evolution. J Exp Zool 318B:134–147

    Article  Google Scholar 

  • Williams SA, Meyer MR (2019) The spine of Australopithecus. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 125–152

    Google Scholar 

  • Williams SA, Russo GA (2015) Evolution of the hominoid vertebral column: the long and the short of it. Evol Anthropol 24:15–32

    Article  PubMed  Google Scholar 

  • Williams SA, Ostrofsky KR, Frater N, Churchill SE, Schmid P, Berger LR (2013) The vertebral column of Australopithecus sediba. Science 340:1232996

    Article  PubMed  Google Scholar 

  • Williams SA, Middleton ER, Villamil CI, Shattuck MR (2016) Vertebral numbers and human evolution. Am J Phys Anthropol 159(S61):S19–S36

    Article  PubMed  Google Scholar 

  • Williams SA, Meyer MR, Nalla S, García-Martínez D, Nalley TK, Eyre J, Prang TC, Bastir M, Schmid P, Churchill SE, Berger LE (2018) The vertebrae, ribs, and sternum of Australopithecus sediba. PaleoAnthropology 2018:156–233

    Google Scholar 

  • Williams SA, Spear JK, Petrullo L, Goldstein D, Lee AB, Peterson AL, Miano DA, Kaczmarek EB, Shattuck MR (2019) Increased variation in numbers of presacral vertebrae in suspensory mammals. Nat Ecol Evol 3:949–956

    Article  Google Scholar 

  • Yamagiwa J, Mwanza N (1994) Day-journey length and daily diet of solitary male gorillas in lowland and highland habitats. Int J Primatol 15:207–244

    Article  Google Scholar 

  • Zapfe H (1958) The skeleton of Pliopithecus (Epipliopithecus) vindobonensis Zapfe and Hürzeler. Am J Phys Anthropol 16:441–458

    Article  Google Scholar 

  • Zapfe H (1960) A new fossil anthropoid from the Miocene of Austria. Curr Anthropol 1:428–429

    Article  Google Scholar 

  • Zichello JM (2018) Look in the trees: hylobatids as evolutionary models for extinct hominins. Evol Anthropol 27:142–146

    Article  PubMed  Google Scholar 

  • Zichello JM, Baab KL, McNulty KP, Raxworthy CJ, Steiper ME (2018) Hominoid intraspecific cranial variation mirrors neutral genetic diversity. Proc Natl Acad Sci U S A 115:11501–11506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ella Been for her leadership in organizing this volume and for inviting us to contribute to it. Peer review improved the manuscript. We thank N. Duncan, G. Garcia, E. Hoeger, S. Ketelsen, A. Marcato, B. O’Toole, M. Surovy, and E. Westwig (American Museum of Natural History); M. Milella, M. Ponce de León, and C. Zollikofer (Anthropological Institute and Museum, University of Zurich); H. Taboada (Center for the Study of Human Origins, New York University); Y. Haile-Selassie and L. Jellema (Cleveland Museum of Natural History); D. Katz and T. Weaver (Department of Anthropology, U.C. Davis); B. Patterson, A. Goldman, M. Schulenberg, L. Smith, and W. Stanley (Field Museum of Natural History); C. McCaffery and D. Reed (Florida Museum of Natural History, University of Florida); S. McFarlin (the George Washington University); J. Ashby (Grant Museum of Zoology; University College London); J. Chupasko, J. Harrison, and M. Omura (Harvard Museum of Comparative Zoology); E. Gilissen and W. Wendelen (Musée Royal de l’Afrique Centrale); S. Jancke, N. Lange, and F. Mayer, (Musée für Naturkunde, Berlin); C. Lefèvre (Muséum national d’Histoire naturelle); C. Conroy (Museum of Vertebrate Zoology, U.C. Berkeley); N. Edmison, L. Gordon, K. Helgen, E. Langan, D. Lunde, J. Ososky, and R. Thorington (National Museum of Natural History, Smithsonian Institution); P. Jenkins, L. Tomsett, and R. Portela (Natural History Museum, London); J. Soderberg and M. Tappen (Neil C. Tappen Collection, University of Minnesota); M. Nowak-Kemp (Oxford University Museum of Natural History); S. Bruaux and G. Lenglet (Royal Belgian Institute of Natural Sciences); A. Zihlman, C. Underwood, and J. Hudson (University of California, Santa Cruz); R. Asher (University Museum of Zoology, University of Cambridge); B. Zipfel, S. Jirah, L. Berger, B. Billings, and J. Hemmingway (University of the Witwatersrand); and M. Hiermeier (Zoologische Staatssammlung München) for facilitating access to specimens in their care. SAW has been funded by the National Science Foundation (BCS-0925734), the Leakey Foundation, and the New York University Research Challenge Fund. Part of the data collection done by AGO was possible thanks to the support from the SYNTHESYS Project http://www.synthesys.info/ which is financed by the European Community Research Infrastructure Action under the FP7 “Capacities” Program (projects BE-TAF-4132 and GB-TAF-3674). AGO has received support from the Spanish Ministerio de Ciencia y Tecnología (project: CGL-2015-65387-C3-2-P, MINECO/FEDER), the Spanish Ministerio de Ciencia, Innovación y Universidades (project PGC2018-093925-B-C33), Research Group IT1418-19 from the Eusko Jaurlaritza-Gobierno Vasco. We gratefully acknowledge the Rwandan government for permission to study skeletal remains curated by the Mountain Gorilla Skeletal Project (MGSP). The authors also thank the continuous efforts of researchers, staff, and students from the Rwanda Development Board’s Department of Tourism and Conservation, Gorilla Doctors, DFGFI, the George Washington University, New York University College of Dentistry, Institute of National Museums of Rwanda, and other universities in Rwanda and the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Williams .

Editor information

Editors and Affiliations

Appendix

Appendix

Taxon

Cervical

Thoracic

Lumbar

Sacral

TV levela

TLb

CTLSc

Total N/TV N (top) and # form. (bottom), freq.d

H. sapiens

Mean

7.00

11.99

4.98

5.22

18.70

16.97

29.19

784/732

CTLS modee

7

12

5

5

17

29

63.2%

CTLS 2ndf

7

12

5

6

17

30

14.9%

CTLS+TV modeg

7

12

5

5

19

17

29

36.6%

CTLS+TV 2ndh

7

12

5

5

18

17

29

20.4%

CTLS+TV 3rd

7

12

5

6

19

17

30

10.9%

Range

(6–7.5)

(11–13)

(4–6)

(4–7)

(18–20)

(15–18)

(27–31)

39/75

P. paniscus

Mean

7.01

13.51

3.55

6.35

20.17

17.06

30.42

72/51

CTLS mode

7

13

4

6

17

30

18.2%

CTLS 2nd

7

14

3

7

17

31

10.9%

CTLS+TV mode

7

13

4

6

20

17

30

11.8%

Range

(6.5–8)

(12.5–14)

(2–4)

(5–8)

(19–21)

(16–18)

(28–32)

24/35

P. troglodytes

Mean

7.00

13.11

3.67

5.69

19.78

16.77

29.46

526/342

CTLS mode

7

13

4

6

17

30

28.5%

CTLS 2nd

7

13

4

5

17

29

21.0%

CTLS 3rd

7

13

3

6

16

29

13.6%

CTLS+TV mode

7

13

4

6

20

17

30

24.3%

CTLS+TV 2nd

7

13

4

5

20

17

29

16.4%

Range

(6–7.5)

(12–14)

(2–5)

(4–7)

(18–20)

(15–18)

(28–31)

45/60

P. t. schweinfurthii

Mean

7.01

13.15

3.83

5.84

19.81

16.99

29.84

52/44

CTLS mode

7

13

4

6

17

30

45.8%

CTLS 2nd

7

13

4

5

17

29

10.4%

CTLS+TV mode

7

13

4

6

20

17

30

36.4%

CTLS+TV 2nd

7

13

4

6

19

17

30

11.4%

Range

(7–7.5)

(12–14)

(2–5)

(4.5–7)

(19–21)

(16–18)

(28–31)

19/22

P. t. troglodytes

Mean

7.00

13.06

3.72

5.65

19.74

16.78

29.44

241/203

CTLS mode

7

13

4

6

17

30

29.5%

CTLS 2nd

7

13

4

5

17

29

20.5%

CTLS 3rd

7

13

3

6

16

29

12.0%

CTLS+TV mode

7

13

4

6

20

17

30

20.2%

CTLS+TV 2nd

7

13

4

5

20

17

29

14.8%

Range

(6.5–7.5)

(12–14)

(2–5)

(4–7)

(18–21.5)

(15–18)

(28–31)

35/50

P. t. verus

Mean

6.98

13.23

3.44

5.73

19.71

16.67

29.38

24/17

CTLS mode

7

13

3

6

16

29

8.5%

CTLS 2nd

7

13

4

5

17

29

16.7%

CTLS 3rd

7

13

4

6

17

30

16.7%

CTLS+TV mode

7

13

4

6

20

17

30

23.5%

CTLS+TV 2nd

7

13

4

5

20

17

29

17.6%

CTLS+TV 3rd

7

13

3

6

20

16

29

11.8%

CTLS+TV 4th

7

14

3

6

20

17

30

11.8%

Range

(6.5–7)

(13–14)

(3–4)

(5–7)

(18.5–20)

(16–18)

(28–31)

10/10

G. gorilla

Mean

6.99

13.03

3.53

5.59

20.01

16.57

29.16

375/319

CTLS mode

7

13

4

5

17

29

24.0%

CTLS 2nd

7

13

3

6

16

29

21.9%

CTLS 3rd

7

13

4

6

17

30

16.3%

CTLS+TV mode

7

13

4

5

20

17

29

17.9%

CTLS+TV 2nd

7

13

3

6

20

16

29

15.7%

Range

(6–7)

(12–15)

(2–5)

(4–8)

(18–23)

(16–18)

(27–31.5)

42/81

G. beringei

Mean

6.99

12.90

3.16

5.96

19.81

16.06

29.01

126/83

CTLS mode

7

13

3

6

16

29

71.4%

CTLS+TV mode

7

13

3

6

20

16

29

39.8%

CTLS+TV 2nd

7

13

3

6

19

16

29

19.3%

Range

(6–7)

(12–13)

(2–4)

(5–7)

(17–23)

(15–17)

(27–30)

14/24

G. b. beringei

Mean

6.99

12.86

3.19

5.92

19.95

16.06

28.96

71/41

CTLS mode

7

13

3

6

16

29

64.7%

CTLS 2nd

7

12

4

6

16

29

11.8%

CTLS+TV mode

7

13

3

6

20

16

29

39.0%

CTLS+TV 2nd

7

13

3

6

19

16

29

12.2%

Range

(6–7)

(12–13)

(3–4)

(5–7)

(18–23)

(15–17)

(28–30)

12/19

G. b. graueri

Mean

7.00

12.96

3.00

6.07

20.04

15.96

29.04

28/27

CTLS mode

7

13

3

6

16

29

82.1%

CTLS 2nd

7

13

3

7

16

30

10.7%

CTLS 3rd

7

13

3

6

20

16

29

44.4%

CTLS+TV mode

7

13

3

6

19

16

29

18.5%

CTLS+TV 2nd

7

13

3

6

22

16

29

11.1%

Range

(12–13)

(2–4)

(5–7)

(18–23)

(15–16)

(27–30)

4/9

Pongo

Mean

6.98

11.95

4.01

5.12

19.13

15.96

28.07

330/163

CTLS mode

7

12

4

5

16

28

39.0%

CTLS 2nd

7

12

4

6

16

29

14.0%

CTLS+TV mode

7

12

4

5

19

16

28

30.1%

Range

(6–7)

(11–13)

(3–5)

(4–7)

(18–21)

(14.5–17)

(26–30)

39/53

P. pygmaeus

Mean

6.98

11.90

4.02

5.24

19.07

15.92

28.15

148/83

CTLS mode

7

12

4

5

16

28

33.6%

CTLS 2nd

7

12

4

6

16

29

16.8%

CTLS+TV mode

7

12

4

5

19

16

28

27.7%

CTLS+TV 2nd

7.0

12.0

4.0

6.0

19

16

29

13.3%

Range

(6–7)

(11–13)

(3–5)

(4–7)

(18–20)

(14.5–17)

(27–30)

31/36

P. abelii

Mean

7.0

12.1

4.0

5.0

19.3

16.10

28.11

50/32

CTLS mode

7

12

4

5

16

28

47.8%

CTLS+TV mode

7

12

4

5

19

16

28

28.1%

CTLS+TV 2nd

7

12

4

4

19

16

27

12.5%

Range

(6.5–7)

(11–13)

(3–5)

(4–6)

(18–21)

(15–17)

(27–30)

12/17

S. syndactylus

Mean

7.00

13.11

4.53

4.70

19.83

17.64

29.34

87/45

CTLS mode

7

13

5

5

18

30

20.2%

CTLS 2nd

7

13

5

4

18

29

17.9%

CTLS 3rd

7

13

4

5

17

29

17.9%

CTLS+TV mode

7

13

5

5

20

18

30

20.0%

CTLS+TV 2nd

7

13

5

4

20

18

29

13.3%

CTLS+TV 3rd

7

13

4

5

20

17

29

11.1%

Range

(12–14)

(4–5)

(4–6)

(18–21)

(16–19)

(27–31)

21/22

H. hoolock

Mean

7

12.9

4.92

4.2

19.5

17.82

29.02

25/4

CTLS mode

7

13

5

4

18

29

52.0%

CTLS 2nd

7

13

5

5

18

30

12.0%

Range

(12–13.5)

(4–6)

(3–5)

(19–20)

(17–19)

(28–30)

10/4

H. lar

Mean

7.00

13.05

5.13

3.86

19.57

18.19

29.04

262/239

CTLS mode

7

13

5

4

18

29

47.7%

CTLS+TV mode

7

13

5

4

20

18

29

23.4%

CTLS+TV 2nd

7

13

5

4

19

18

29

23.4%

Range

(6–8)

(12–14)

(4–6)

(3–5)

(18.5–21)

(17–19)

(28–31)

37/50

H. agilis

Mean

7.00

13.00

4.87

4.30

20.00

17.87

29.16

34/20

CTLS mode

7

13

5

4

18

29

37.5%

CTLS 2nd

7

13

5

5

18

30

18.8%

CTLS+TV mode

7

13

5

4

20

18

29

30.0%

CTLS+TV 2nd

7

13

5

5

20

18

30

15.0%

CTLS+TV 3rd

7

13

5

4

19

18

29

10.0%

Range

(12–14)

(4–6)

(3.5–5)

(19–21)

(17–19)

(28–30)

15/12

H. moloch

Mean

7.00

13.06

4.77

4.66

19.50

17.83

29.49

33/6

CTLS mode

7

13

5

5

18

30

40.0%

CTLS 2nd

7

13

5

4

18

29

26.7%

Range

(7–8)

(12–14)

(4–5.5)

(3.5–6)

(19–20)

(17–19)

(28–30)

11/5

H. klossii

Mean

7.00

13.04

5.04

4.54

20.17

18.08

29.62

13/5

CTLS mode

7

13

5

5

18

30

50.0%

CTLS 2nd

7

13

5

4

18

29

16.7%

CTLS+TV mode

7

13

5

4

20

18

29

40.0%

CTLS+TV 2nd

7

13

5

5

20

18

30

40.0%

Range

(13–13.5)

(4–6)

(4–5)

(20–21)

(17–19)

(28–30)

6/3

H. muelleri

Mean

7.03

13.09

4.70

4.41

19.69

17.79

29.23

35/31

CTLS mode

7

13

5

4

18

29

25.7%

CTLS 2nd

7

13

5

5

18

30

17.1%

CTLS 3rd

7

13

5

4.5

18

30

11.4%

CTLS+TV mode

7

13

5

4

20

18

29

12.9%

CTLS+TV 2nd

7

13

5

5

20

18

30

12.9%

Range

(7–8)

(12–14)

(3.5–6)

(4–5)

(19–21)

(16–19)

(27–31)

18/20

H. pileatus

Mean

7.00

12.44

5.07

4.00

19.67

17.51

28.51

8/2

CTLS mode

7

12

5

4

17

28

42.9%

CTLS 2nd

7

13

5

4

18

29

28.6%

Range

(12–13)

(4.5–6)

(4–4)

19–20

(17–18)

(28–29)

4/2

N. concolor

Mean

7.00

13.12

4.92

4.58

20.21

18.04

29.62

25/6

CTLS mode

7

13

5

4

18

29

41.7%

CTLS 2nd

7

13

5

5

18

30

29.2%

CTLS+TV mode

7

13

5

5

19.5

18

30

33.3%

Range

(12–14.5)

(4–6)

(4–6)

(19–21)

(17–19)

(28–32)

8/5

N. gabrielle

Mean

7.00

13.93

4.89

4.96

21.00

18.82

30.79

21/2

CTLS mode

7

14

5

5

19

31

57.1%

CTLS 2nd

7

14

4

5

18

30

14.3%

Range

(13–14)

(4–6)

(4–5.5)

(21–21)

(18–20)

(30–32)

6/2

T. cristatus

Mean

7.00

12.02

7.00

2.90

17.02

19.02

28.93

50/50

CTLS mode

7

12

7

3

19

29

87.5%

CTLS+TV mode

7

12

7

3

17

19

29

87.5%

Range

(12–13)

(6.5–7.5)

(2–3)

(17–18)

(19–20)

(28–30)

6/6

P. cynocephalus

Mean

7.00

12.48

6.44

2.90

16.98

18.92

28.82

88/88

CTLS mode

7

13

6

3

19

29

42.0%

CTLS 2nd

7

12

7

3

19

29

32.0%

CTLS 3rd

7

12

7

2

19

28

10.0%

CTLS+TV mode

7

13

6

3

17

19

29

20.5%

CTLS+TV 2nd

7

12

7

3

17

19

29

18.2%

Range

(11.5–13)

(5.5–7)

(2–4)

(16–18)

(17–20)

(27–30)

9/12

  1. aTV level: the absolute vertebral level at which the transitional vertebra occurs
  2. bTL: Number of thoracic and lumbar (thoracolumbar) vertebrae
  3. cCTLS: Number of cervical, thoracic, lumbar, and sacral (precaudal) vertebrae
  4. dThe first row of each taxon contains the total N and N of transitional vertebra data (shown as N/N); the last row contains the number of vertebral formulae sampled for the total N and N of transitional vertebra data (shown as N/N); the rows in between the first and last show the frequency of vertebral formulae sampled at ≥10%
  5. eCTLS mode: The modal vertebral formula sampled in each taxon (not including the position of the transitional vertebra)
  6. fCTLS 2nd, etc.: The second (and third, etc.) most common vertebral formula sampled (sans the TV)
  7. gCTLS+TV mode: The modal vertebral formula (with position of the transitional vertebra) sampled in each taxon
  8. hCTLS+TV 2nd, etc.: The second (and third, etc.) most common vertebral formula (with position of the transitional vertebra) sampled in each taxon

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, S.A., Gómez-Olivencia, A., Pilbeam, D.R. (2019). Numbers of Vertebrae in Hominoid Evolution. In: Been, E., Gómez-Olivencia, A., Ann Kramer, P. (eds) Spinal Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-19349-2_6

Download citation

Publish with us

Policies and ethics