Skip to main content

Application of Fixed Skipped Steps Discrete Wavelet Transform in JP3D Lossless Compression of Volumetric Medical Images

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis (BDAS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1018))

Abstract

In this paper, we report preliminary results of applying a step skipping to the discrete wavelet transform (DWT) in lossless compression of volumetric medical images. In particular, we generalize the two-dimensional (2D) fixed variants of skipped steps DWT (SS-DWT), which earlier were found effective for certain 2D images, to a three-dimensional (3D) case and employ them in JP3D (JPEG 2000 standard extension for 3D data) compressor. For a set of medical volumetric images of modalities CT, MRI, and US, we find that, by adaptively selecting 3D fixed variants of SS-DWT, we may improve the JP3D bitrates in an extent competitive to much more complex modifications of DWT and JPEG 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sun.aei.polsl.pl/~rstaros/rdls-ss-dwt/.

  2. 2.

    http://www.irissoftware.be/.

References

  1. Addison, P.S.: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  2. Bernas, T., Starosolski, R., Robinson, J.P., Rajwa, B.: Application of detector precision characteristics and histogram packing for compression of biological fluorescence micrographs. Comput. Methods Prog. Biomed. 108(2), 511–523 (2012). https://doi.org/10.1016/j.cmpb.2011.03.012

    Article  Google Scholar 

  3. Bernas, T., Starosolski, R., Wójcicki, R.: Application of detector precision characteristics for the denoising of biological micrographs in the wavelet domain. Biomed. Sig. Process. Control 19, 1–13 (2015). https://doi.org/10.1016/j.bspc.2015.02.010

    Article  Google Scholar 

  4. Bruylants, T., Munteanu, A., Schelkens, P.: Wavelet based volumetric medical image compression. Sig. Process. Image Commun. 31, 112–133 (2015). https://doi.org/10.1016/j.image.2014.12.007

    Article  Google Scholar 

  5. Chang, C., Girod, B.: Direction-adaptive discrete wavelet transform for image compression. IEEE Trans. Image Process. 16(5), 1289–1302 (2007). https://doi.org/10.1109/TIP.2007.894242

    Article  MathSciNet  Google Scholar 

  6. Clunie, D.: What is different about medical image compression? IEEE Commun. Soc. MMTC E-Lett. 6(7), 31–37 (2011)

    Google Scholar 

  7. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998). https://doi.org/10.1007/BF02476026

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, W., Wu, F., Wu, X., Li, S., Li, H.: Adaptive directional lifting-based wavelet transform for image coding. IEEE Trans. Image Process. 16(2), 416–427 (2007). https://doi.org/10.1109/TIP.2006.888341

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, W., Shi, G., Xu, J.: Adaptive nonseparable interpolation for image compression with directional wavelet transform. IEEE Sig. Process. Lett. 15, 233–236 (2008). https://doi.org/10.1109/LSP.2007.914929

    Article  Google Scholar 

  10. Dufaux, F., Sullivan, G.J., Ebrahimi, T.: The JPEG XR image coding standard. IEEE Sig. Process. Mag. 26(6), 195–204 (2009). https://doi.org/10.1109/MSP.2009.934187

    Article  Google Scholar 

  11. Hardie, R.C., Barner, K.E.: Rank conditioned rank selection filters for signal restoration. IEEE Trans. Image Process. 3(2), 192–206 (1994). https://doi.org/10.1109/83.277900

    Article  Google Scholar 

  12. ISO/IEC, ITU-T: Information technology - lossless and near-lossless compression of continuous-tone still images - Baseline (2000). ISO/IEC International Standard 14495-1 and ITU-T Recommendation T.87

    Google Scholar 

  13. ISO/IEC, ITU-T: Information technology - JPEG 2000 image coding system: extensions (2004). ISO/IEC International Standard 15444-2 and ITU-T Recommendation T.801

    Google Scholar 

  14. ISO/IEC, ITU-T: Information technology - JPEG 2000 image coding system: extensions for three-dimensional data (2011). ISO/IEC International Standard 15444-10 and ITU-T Recommendation T.809

    Google Scholar 

  15. ISO/IEC, ITU-T: Information technology - high efficiency coding and media delivery in heterogeneous environments - Part 2: high efficiency video coding (2015). ISO/IEC International Standard 23008-2 and ITU-T Recommendation H.265

    Google Scholar 

  16. ISO/IEC, ITU-T: Information technology - JPEG 2000 image coding system: core coding system (2016). ISO/IEC International Standard 15444–1 and ITU-T Recommendation T.800

    Google Scholar 

  17. ISO/IEC, ITU-T: Information technology - JPEG XR image coding system - image coding specification (2016). ISO/IEC International Standard 29199-2 and ITU-T Recommendation T.832

    Google Scholar 

  18. Janhom, A., van der Stelt, P., Sanderink, G.: A comparison of two compression algorithms and the detection of caries. Dentomaxillofacial Radiol. 31(4), 257–263 (2002). https://doi.org/10.1038/sj.dmfr.4600704

    Article  Google Scholar 

  19. Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M., Bilgin, A.: The current role of image compression standards in medical imaging. Information 8(4), 131 (2017). https://doi.org/10.3390/info8040131

    Article  Google Scholar 

  20. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1998). https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  21. Malvar, H.S., Sullivan, G.J., Srinivasan, S.: Lifting-based reversible color transformations for image compression. In: Applications of Digital Image Processing XXXI, Proceedings of SPIE, vol. 7073, p. 707307 (2008). https://doi.org/10.1117/12.797091

  22. Obuchowicz, R., Nurzynska, K., Obuchowicz, B., Urbanik, A., Piorkowski, A.: Caries detection enhancement using texture feature maps of intraoral radiographs. Oral Radiol. (2018). https://doi.org/10.1007/s11282-018-0354-8

    Article  Google Scholar 

  23. Peng, W.H., et al.: Overview of screen content video coding: technologies, standards, and beyond. IEEE J. Emerg. Sel. Top. Circ. Syst. 6(4), 393–408 (2016). https://doi.org/10.1109/JETCAS.2016.2608971

    Article  Google Scholar 

  24. Sanchez, V., Abugharbieh, R., Nasiopoulos, P.: Symmetry-based scalable lossless compression of 3D medical image data. IEEE Trans. Med. Imaging 28(7), 1062–1072 (2009). https://doi.org/10.1109/TMI.2009.2012899

    Article  Google Scholar 

  25. Starosolski, R.: Reversible denoising and lifting based color component transformation for lossless image compression. arXiv:1508.06106 [cs.MM] (2016). http://arxiv.org/abs/1508.06106

  26. Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Visual Commun. Image Represent. 25(5), 1056–1063 (2014). https://doi.org/10.1016/j.jvcir.2014.03.003

    Article  Google Scholar 

  27. Starosolski, R.: Application of reversible denoising and lifting steps to DWT in lossless JPEG 2000 for improved bitrates. Sig. Process. Image Commun. 39(A), 249–263 (2015). https://doi.org/10.1016/j.image.2015.09.013

    Article  Google Scholar 

  28. Starosolski, R.: Application of reversible denoising and lifting steps with step skipping to color space transforms for improved lossless compression. J. Electron. Imaging 25(4), 043025 (2016). https://doi.org/10.1117/1.JEI.25.4.043025

    Article  Google Scholar 

  29. Starosolski, R.: Skipping selected steps of DWT computation in lossless JPEG 2000 for improved bitrates. PLOS ONE 11(12), e0168704 (2016). https://doi.org/10.1371/journal.pone.0168704

    Article  Google Scholar 

  30. Starosolski, R.: A practical application of skipped steps DWT in JPEG 2000 Part 2-compliant compressor. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2018. CCIS, vol. 928, pp. 334–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99987-6_26

    Chapter  Google Scholar 

  31. Strutz, T.: Multiplierless reversible colour transforms and their automatic selection for image data compression. IEEE Trans. Circ. Syst. Video Technol. 23(7), 1249–1259 (2013). https://doi.org/10.1109/TCSVT.2013.2242612

    Article  Google Scholar 

  32. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3, 186–200 (1996). https://doi.org/10.1006/acha.1996.0015

    Article  MathSciNet  MATH  Google Scholar 

  33. Taubman, D.S., Marcellin, M.W.: JPEG2000 Image Compression Fundamentals, Standards and Practice. Springer, New York (2004). https://doi.org/10.1007/978-1-4615-0799-4

    Book  Google Scholar 

  34. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000). https://doi.org/10.1109/83.855427

    Article  Google Scholar 

  35. Xu, J., Joshi, R., Cohen, R.A.: Overview of the emerging HEVC screen content coding extension. IEEE Trans. Circuits Syst. Video Technol. 26(1), 50–62 (2016). https://doi.org/10.1109/TCSVT.2015.2478706

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the 02/020/BK_18/0128 grant from the Institute of Informatics, Silesian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Starosolski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starosolski, R. (2019). Application of Fixed Skipped Steps Discrete Wavelet Transform in JP3D Lossless Compression of Volumetric Medical Images. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis. BDAS 2019. Communications in Computer and Information Science, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-030-19093-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19093-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19092-7

  • Online ISBN: 978-3-030-19093-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics