Skip to main content

Mathematical Practice as Philosophy, with Galois, Riemann, and Grothendieck

Handbook of the History and Philosophy of Mathematical Practice
  • 79 Accesses

Abstract

The primary aim of this chapter is to consider mathematicians’ working philosophy of mathematics as emerging in and defining actual mathematical thinking and practice, as exemplified in three cases stated in my subtitle: Niels Henrik Abel and Évariste Galois, Nikolai Lobachevsky and Bernhard Riemann, and André Weil and Alexander Grothendieck. I speak of “and” and hence “conjunction,” rather than the disjunctive “or,” in all three paired cases considered in this chapter because, while my primary concern is on the (historically) second figure – Galois, Riemann, and Grothendieck – in each case, my aim is not merely to juxtapose these figures, especially given the significance of their thinking for transforming mathematics. The work of Abel, Lobachevsky, and Weil were revolutionary events as well. Instead, while granting the differences between their thinking, my aim is to explore the shared grounding that gives rise to these differences, defining, and defined by, their mathematical practice as philosophy. The chapter’s approach to their mathematical practice and to creative mathematical practice in general is parallel to that of Deleuze and Guattari in creative philosophical practice, which or even true philosophy itself is defined by them as the practice of the invention of new concepts, with philosophical concepts given a particular definition, in part in juxtaposition to mathematical and scientific concepts. The working philosophy of mathematics this chapter considers, under the heading of “mathematical practice as philosophy,” is, analogously, defined as the practice of the invention of new mathematical concepts, defined, against the grain of Deleuze and Guattari’s argument, in affinity with (although not identically to) philosophical concepts in their definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A’Campo N, Ji L, Papadopoulos A (2016) On Grothendieck's construction of the Teichmüller space. In: Papadopoulos A (ed) Handbook of Teichmüller theory, volume VI. European Mathematical Society, Zürich, pp 35–70

    Chapter  MATH  Google Scholar 

  • Cartier P (2001) A mad day’s work: from Grothendieck to Connes and Kontsevich, the evolution of concepts of space and symmetry. Bull Am Math Soc 38(4):389–408

    Article  MATH  Google Scholar 

  • Connes A (2003) Symétries Galoisiennes et renormalization. In: Duplantier B, Rivasseau V (eds) Poincaré seminar 2002: vacuum energy, renormalization, Progress in mathematical physics 30. Birkhäuser, Boston/Cambridge

    Google Scholar 

  • Connes A, Kreimer D (2001) Renormalization in quantum field theory and the Riemann-Hilbert problem. II. Comm Math Phys 216(1):215–241

    Article  MathSciNet  MATH  Google Scholar 

  • Connes A, Marcolli M (2004) Renormalization and motivic Galois theory. Int Math Res Notices 76:4073–4092

    Article  MathSciNet  MATH  Google Scholar 

  • Connes A, Marcolli M (2007) Noncommutative geometry, quantum fields, and motives. American Mathematical Society, Hindustan Book Agency

    Book  MATH  Google Scholar 

  • Corfield D (2006) Towards a philosophy of real mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Corfield D (2020) Modal homotopy type theory: the prospect for a new logic of philosophy. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Corry L (2003) Modern algebra and the rise of mathematical structures. Birkhäuser, Boston

    MATH  Google Scholar 

  • De Bianchi S, Wells JD (2015) Explanation and the dimensionality of space Kant’s argument revisited. Synthese 192(1):287–303

    Article  Google Scholar 

  • Deleuze G (1995) Difference and repetition (trans: Patton P). Columbia University Press, New York

    Google Scholar 

  • Deleuze G, Guattari F (1987) A thousand plateau (trans: Massumi B). University of Minnesota Press, Minneapolis

    Google Scholar 

  • Deleuze G, Guattari F (1996) What is philosophy? (trans: Tomlinson H, Burchell G). Columbia University Press, New York

    Google Scholar 

  • Doxiadis A, Mazur B (eds) (2012) Circles disturbed: the interplay of mathematics and narrative. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Ferreirós J (2006) Riemann’s Habilitationsvortrag at the crossroads of mathematics, physics, and philosophy. In: Ferreirós J, Gray J (eds) The Architecture of modern mathematics: Essays in history and philosophy. Oxford University Press, Oxford, pp 67–96

    MATH  Google Scholar 

  • Ferreirós J (2010) Labyrinth of thought: a history of set theory and its role in modern mathematics. Birkhäuser, Boston

    MATH  Google Scholar 

  • Gray J, Ferreirós J (2021) Epistemology of Geometry, The Stanford Encyclopedia of Philosophy (Fall 2021 Edition), EN Zalta (ed). URL = https://plato.stanford.edu/archives/fall2021/entries/epistemology-geometry/

  • Heisenberg W (1962) Physics and philosophy: the revolution in modern science. Harper & Row, New York

    Google Scholar 

  • Hilbert D (1979) Foundations of geometry, 10th ed (trans: Unger L). Open Court, La Salle

    Google Scholar 

  • Husserl E (1970) The origin of geometry. In: The crisis of European sciences and transcendental phenomenology: an introduction to phenomenological philosophy (trans: Carr D), Northwestern University Press, Evanston, pp 353–378

    Google Scholar 

  • Ji L, Papadopoulos A, Yamada S (eds) (2017) From Riemann to differential geometry and relativity. Springer, Berlin

    MATH  Google Scholar 

  • Kant I (1997) Critique of pure reason (trans: Guyer P, Wood AW). Cambridge University Press, Cambridge

    Google Scholar 

  • Kant I (2012[1747]) Thoughts on the true estimation of living forces. In: Watkins E (ed) Immanuel Kant: Natural science. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Kontsevich M (1999) Operads and motives in deformation quantization. Lett Math Phys 48(1):35–72

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn T (2012) The structure of scientific revolutions. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Lakatos I (1980) Mathematics, science and epistemology, philosophical papers volume 2 (Worral J, Currie G, eds). Cambridge University Press, Cambridge

    Google Scholar 

  • Langlands R, Shelstad D (2007) Descent for transfer factors. In: Cartier P, Katz NM, Manin YI, Illusie L, Laumon G, Ribet KA (eds) The Grothendieck Festschrift. Birkhäuser, Boston, pp 485–563. https://doi.org/10.1007/978-0-8176-4575-5_12

    Chapter  Google Scholar 

  • Laugwitz D (1999) Bernhard Riemann: turnings points in the conception of mathematics (trans: Shenitzer A). Birkhäuser, Boston

    Google Scholar 

  • Manin Y (2002) Georg cantor and his heritage, ArXiv.math.AG/0209244 v1. 19 Sept 2002

    Google Scholar 

  • Manin Y (2019) Time and periodicity from Ptolemy to Schrödinger: paradigm shift vs. continuity in history of mathematics. In: Dani SG, Papadopoulos A (eds) Geometry in history. Springer, Berlin, pp 129–138

    Chapter  MATH  Google Scholar 

  • Negrepontis S (2019) Plato on geometry and the geometers. In: Dani SG, Papadopoulos A (eds) Geometry in history. Springer, Berlin, pp 1–88

    MATH  Google Scholar 

  • Nietzsche F (1966) Beyond good and evil: a prelude to a philosophy of the future (trans: Kaufmann W). Vintage, New York

    Google Scholar 

  • Pambuccian V, Struve H, Struve R (2017) Metric geometries in an axiomatic perspective. In: Ji L, Papadopoulos A, Yamada S (eds) From Riemann to differential geometry and relativity. Springer, Berlin, pp 414–455

    MATH  Google Scholar 

  • Papadopoulos A (2010) Introduction. In: Lobachevsky N, Pangeometry (edit and trans: Papadopoulos A) heritage of European mathematics. European Mathematical Society, Zürich, pp 229–234

    Chapter  Google Scholar 

  • Papadopoulos A (2017) Riemann surfaces: reception by the French school. In: Ji L, Papadopoulos A, Yamada S (eds) From Riemann to differential geometry and relativity. Springer, Berlin, pp 237–294

    Chapter  Google Scholar 

  • Pesic P (2007) Introduction. In: Beyond geometry: classic papers from Riemann to Einstein. Dover, Mineola, pp 1–22

    MATH  Google Scholar 

  • Picard É (1891–1896) Traité d’analyse, 3 volumes, Paris, Gauthier-Villars

    Google Scholar 

  • Plotnitsky A (2017) ‘Comprehending the connection of things:’ Bernhard Riemann and the architecture of mathematical concepts. In: Ji L, Papadopoulos A, Yamada S (eds) From Riemann to differential geometry and relativity. Springer, Berlin, pp 329–363

    Chapter  MATH  Google Scholar 

  • Plotnitsky A (2019) On the concept of curve: geometry and algebra, from mathematical modernity to mathematical modernism. In: Dani SG, Papadopoulos A (eds) Geometry in history. Springer, Berlin, pp 153–212

    Chapter  MATH  Google Scholar 

  • Plotnitsky A (2020) The ghost and the spirit of Pythagoras: the 20th and 21st century mathematics between and beyond geometry and algebra. In: Sriraman B (ed) Handbook of the history & philosophy of mathematical practice. Springer/Nature, London

    Google Scholar 

  • Plotnitsky A (2021a) Returns of geometry: from the Pythagoreans to mathematical modernism and beyond. In: Papadopoulos A (ed) Topology and geometry: a collection of essays dedicated to Vladimir G. Turaev. EMS Press, Berlin

    Google Scholar 

  • Plotnitsky A (2021b) Reality without realism: matter, thought, and technology in quantum physics. Springer, Heidelberg

    Book  Google Scholar 

  • Polya G (1990) Mathematics and plausible reasoning, volume 1: induction and analogy in mathematics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Reed D (1995) Figures of thought: mathematics and mathematical texts. Routledge, London

    MATH  Google Scholar 

  • Riemann B (1854) On the hypotheses that lie at the foundations of geometry. In: Pesic P (ed) Beyond geometry: classic papers from Riemann to Einstein. Dover, Mineola, pp 23–40

    Google Scholar 

  • Riemann B (1991) Gesammelte mathematische Werke und wissenschaftlicher Nachlass (Narasimhan R, ed). Springer, New York

    Google Scholar 

  • Russell B (1897) Essays on foundations of geometry. Cambridge University Press, Cambridge

    Google Scholar 

  • Silverman J, Tate J (2015) Rational points on elliptic curves. Springer, Heidelberg/New York

    Book  MATH  Google Scholar 

  • Stäckel P (1913) Wolfgang und Johann Bolyai, Geometrische Untersuchungen, vol I. Teubner, Leipzig/Berlin

    Google Scholar 

  • Teller P (1995) An interpretive introduction to quantum field theory. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Voevodsky V et al (2013) Homotopy type theory: univalent foundations of mathematics. Univalent Foundations Program, Princeton

    Google Scholar 

  • Vuillemin J (1962) La Philosophie de l'algèbre. Tome I : Recherches sur quelques concepts et méthodes de l'Algèbre moderne est un ouvrage d'une grande technicité, à la fois mathématique et philosophique, Presses universitaires de France, Paris

    Google Scholar 

  • Weil A (1946) Foundations of algebraic geometry. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Weil A (1962) Foundations of algebraic geometry, 2nd edn. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Weyl H (2013) The concept of a Riemann surface (trans: MacLane GL). Dover, Mineola

    Google Scholar 

  • Weyl H (2021) Philosophy of mathematics and natural science. Princeton University Press, Princeton

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Plotnitsky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Plotnitsky, A. (2022). Mathematical Practice as Philosophy, with Galois, Riemann, and Grothendieck. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_97-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_97-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mathematical Practice as Philosophy, with Galois, Riemann, and Grothendieck
    Published:
    19 September 2023

    DOI: https://doi.org/10.1007/978-3-030-19071-2_97-2

  2. Original

    Mathematical Practice as Philosophy, with Galois, Riemann, and Grothendieck
    Published:
    31 December 2022

    DOI: https://doi.org/10.1007/978-3-030-19071-2_97-1