Skip to main content

Reverse Mathematics

  • Living reference work entry
  • First Online:
Handbook of the History and Philosophy of Mathematical Practice
  • 326 Accesses

Abstract

Reverse mathematics is a new take on an old idea: asking which axioms are necessary to prove a given theorem. This question was first asked about the parallel axiom in Euclid’s geometry and later about the axiom of choice in set theory. Obviously, such questions can be asked in many fields of mathematics, but in recent decades, it has proved fruitful to focus on subsystems of second-order arithmetic, where much of mainstream mathematics resides. It has been found that many basic theorems of analysis and topology, as well as certain parts of infinite algebra and combinatorics, can be proved in such systems. And, remarkably, almost all the basic theorems fall into one of five particular systems: a base system RCA0 of “constructive mathematics” and four others defined by certain axioms about real numbers. Moreover, many of the theorems not provable in RCA0 turn out to be equivalent to one of these defining axioms, so we know precisely which axiom is needed to prove them. Thus, after some motivational remarks about the parallel axiom and the axiom of choice, we will concentrate on the study of RCA0 and its extensions, which is what “reverse mathematics” is generally taken to mean today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beltrami E (1868) Teoria fondamentale degli spazii di curvatura costante. Annali di Matematica Pura ed Applicata, ser 2, 2:232–255, in his Opere Matematiche 1:406–429, English translation in Stillwell (1996)

    Google Scholar 

  • Blass A (1984) Existence of bases implies the axiom of choice. In: Axiomatic Set Theory (Boulder, Colorado, 1983), Contemporary Mathematics, vol 31. American Mathematical Society, Providence, pp 31–33

    Chapter  Google Scholar 

  • Bolzano B (1817) Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetzes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Ostwald’s Klassiker, vol. 153. Engelmann, Leipzig, 1905. English translation in Russ (2004), 251–277

    Google Scholar 

  • Boole G (1847) Mathematical analysis of logic. Reprinted by Basil Blackwell, London, 1948

    Google Scholar 

  • Borel É (1898) Leçons sur la théorie des fonctions. Gauthier-Villars, Paris

    MATH  Google Scholar 

  • Cantor G (1874) Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Journal für reine und angewandte Mathematik 77:258–262, in his Gesammelte Abhandlungen, 145–148. English translation by W. Ewald in Ewald (1996), Vol. II, 840–843

    Google Scholar 

  • Cantor G (1883) Über unendliche, lineare Punktmannigfaltigkeiten. Mathematische Annalen 21:545–591, English translation by William Ewald in Ewald (1996), volume II, pp. 881–920

    Google Scholar 

  • Cantor G (1891) Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht deutschen Mathematiker-Vereinigung 1:75–78, English translation by W. Ewald in Ewald (1996), Vol. II, 920–922

    Google Scholar 

  • Cantor G (1895) Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen 46(4):481–512, English translation by P. E. B. Jourdain in Cantor (1952)

    Google Scholar 

  • Cantor G (1952) Contributions to the founding of the theory of transfinite numbers. Dover Publications, Inc., New York, N. Y., translated, and provided with an introduction and notes, by Philip E. B. Jourdain

    Google Scholar 

  • Cohen P (1963) The independence of the continuum hypothesis I, II. Proc Natl Acad Sci 50, 51:1143–1148, 105–110

    Google Scholar 

  • Davis M (ed) (2004) The undecidable. Dover Publications Inc., Mineola, corrected reprint of the 1965 original [Raven Press, Hewlett, NY]

    Google Scholar 

  • Dedekind R (1872) Stetigkeit und irrationale Zahlen. Vieweg und Sohn, Braunschweig (english translation in: Essays on the theory of numbers, Dover, New York, 1963)

    Google Scholar 

  • Diestel R (2010) Graph theory, graduate texts in mathematics, vol 173, 4th edn. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-14279-6

    Book  Google Scholar 

  • Ewald W (1996) From Kant to Hilbert: a source book in the foundations of mathematics. Vol. I, II. The Clarendon Press, Oxford University Press, New York

    Google Scholar 

  • Fraenkel A (1922) Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Mathematische Annalen 86:230–237. https://doi.org/10.1007/BF01457986

    Article  MathSciNet  MATH  Google Scholar 

  • Frege G (1879) Begriffschrift. English translation in van Heijenoort (1967), pp 5–82 [van Heijenoort J (ed) (1967) From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge, MA]

    Google Scholar 

  • Friedman H (1967) Subsystems of set theory and analysis. PhD thesis, MIT Department of Mathematics, Cambridge, MA

    Google Scholar 

  • Friedman H (1969) Bar induction and π11−CA. J Symb Logic 34:353–362

    Article  Google Scholar 

  • Friedman H (1975) Some systems of second order arithmetic and their use. In: Proceedings of the international congress of mathematicians (Vancouver, BC, 1974), vol 1, pp 235–242

    Google Scholar 

  • Friedman H (1976) Systems of second order arithmetic with restricted induction I, II. J Symb Logic 41:557–559

    Article  Google Scholar 

  • Friedman H, Robertson N, Seymour P (1987) The meta mathematics of the graph minor theorem, Logic and combinatorics. American Mathematical Society, pp 229–261

    Google Scholar 

  • Gauss CF (1816) Demonstratio nova altera theorematis omnem functionem algebraicum rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse. Commentationes societas regiae scientiarum Gottingensis recentiores 3:107–142, in his Werke 3:31–56

    Google Scholar 

  • Gödel K (1930) Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37:349–360

    Article  MathSciNet  Google Scholar 

  • Gödel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I. Monatshefte für Mathematik und Physik 38:173–198, English translation in van Heijenoort (1967), 596–616 [van Heijenoort J (ed) (1967) From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge, MA]

    Google Scholar 

  • Gödel K (1938) The consistency of the axiom of choice and the generalized continuum hypothesis. Proc Natl Acad Sci 25:220–224

    Article  Google Scholar 

  • Gödel K (1946) Remarks before the Princeton bicentennial conference on problems in mathematics. In Davis M (ed) (2004) The undecidable. Dover Publications Inc., Mineola, corrected reprint of the 1965 original [Raven Press, Hewlett, NY]

    Google Scholar 

  • Grassmann H (1861) Lehrbuch der Arithmetic. Enslin, Berlin

    Google Scholar 

  • Hamel G (1905) Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f (x+y) = f(x) + f(y). Mathematische Annalen 60:459–462

    Article  MathSciNet  Google Scholar 

  • Hirschfeldt DR (2015) Slicing the truth, Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore, vol 28. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, on the computable and reverse mathematics of combinatorial principles, Edited and with a foreword by Chitat Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin and Yue Yang

    Google Scholar 

  • König D (1927) Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum mathematicarum 3:121–130

    MATH  Google Scholar 

  • Kreisel G (1953) A variant to Hilbert’s theory of the foundations of arithmetic. British J Philos Sci 4:107–129 errata and corrigenda, 357 (1954)

    Google Scholar 

  • Kruskal JB (1960) Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture. Trans Am Math Soc 95:210–225

    MathSciNet  MATH  Google Scholar 

  • Matijasevič YV (1971) Diophantine representation of recursively enumerable predicates. In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1. Gauthier-Villars, Paris, pp 235–238

    Google Scholar 

  • Paris J, Harrington L (1977) A mathematical incompleteness in Peano arithmetic. In: Barwise J (ed) Handbook of mathematical logic. North-Holland, Amsterdam

    Google Scholar 

  • Peano G (1889) Arithmetices principia. Bocca, Torino

    MATH  Google Scholar 

  • Playfair J (1795) Elements of geometry. Bell and Bradfute, Edinburgh

    Google Scholar 

  • Poincaré H (1882) Théorie des groupes fuchsiens. Acta Math 1:1–62, in his Œuvres 2: 108–168. English translation in Poincaré (1985), 55–127

    Google Scholar 

  • Poincaré H (1902) Du rôle de l’intuition et de la logique en mathématiques. Compte Rendu du Deuxième Congrès International des Mathématiciens, Paris

    MATH  Google Scholar 

  • Poincaré H (1985) Papers on Fuchsian Functions. Springer, New York, translated from the French and with an introduction by John Stillwell

    Google Scholar 

  • Post EL (1941) Absolutely unsolvable problems and relatively undecidable propositions – an account of an anticipation. In: Davis M (ed) (2004) The undecidable. Dover Publications Inc., Mineola, corrected reprint of the 1965 original [Raven Press, Hewlett, NY], pp 338–433

    Google Scholar 

  • Post EL (1944) Recursively enumerable sets of positive integers and their decision problems. Bull Am Math Soc 50:284–316

    Article  MathSciNet  Google Scholar 

  • Ramsey FP (1930) On a problem of formal logic. Proc London Math Soc 30:264–286

    Article  MathSciNet  Google Scholar 

  • Robertson N, Seymour PD (2004) Graph minors. XX. Wagner’s conjecture. J Comb Theory Ser B 92(2):325–357

    Article  MathSciNet  Google Scholar 

  • Russ S (2004) The mathematical works of Bernard Bolzano. Oxford University Press, Oxford

    Google Scholar 

  • Russell B (1902) Letter to Frege, pp 124–125, in van Heijenoort (1967), pp 124–125 [van Heijenoort J (ed) (1967) From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge, MA]

    Google Scholar 

  • Simpson SG (2009) Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in logic. Cambridge University Press, Cambridge/Association for Symbolic Logic, Poughkeepsie

    Google Scholar 

  • Stillwell J (1996) Sources of hyperbolic geometry. American Mathematical Society, Providence

    Book  Google Scholar 

  • Turing A (1936) On computable numbers, with an application to the Entscheidungsproblem. Proc London Math Soc 42:230–265

    MathSciNet  MATH  Google Scholar 

  • van Dalen D (2013) L. E. J. Brouwer—topologist, intuitionist, philosopher. Springer, London

    Book  Google Scholar 

  • van Heijenoort J (1967) From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  • Whitehead AN, Russell B (1910) Principia Mathematica. Cambridge University Press, Cambridge, 3 vols. 1910, 1912, 1913

    Google Scholar 

  • Zermelo E (1904) Beweis dass jede Menge wohlgeordnet werden kann. Mathematische Annalen 59:514–516, English translation in van Heijenoort (1967), pp 139–141 [van Heijenoort J (ed) (1967) From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge, MA]

    Google Scholar 

  • Zermelo E (1908) Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen 65:261–281, English translation in van Heijenoort (1967), pp 200–215 [In: van Heijenoort J (ed) (1967) From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge, MA]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Stillwell .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stillwell, J. (2021). Reverse Mathematics. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics