Skip to main content

Copernicus and Axiomatics

  • Living reference work entry
  • First Online:
Handbook of the History and Philosophy of Mathematical Practice

Abstract

The debate about the foundations of mathematical sciences traces back to Greek antiquity, with Euclid and the foundations of geometry. Through the flux of history, the debate has appeared in several shapes, places, and cultural contexts. Remarkably, it is a locus where logic, philosophy, and mathematics meet. In mathematical astronomy, Nicolaus Copernicus’s axiomatic approach toward a heliocentric theory of the universe has prompted questions about foundations among historians who have studied Copernican axioms in their terminological and logical aspects but never examined them as a question of mathematical practice. Copernicus provides seven unproved assumptions in the introduction of the brief treatise entitled Nicolaus Copernicus’s draft on the models of celestial motions established by himself, better known as Commentariolus (ca. 1515), published circa 30 years before the final composition of his heliocentric theory (On the revolutions of the heavenly spheres, 1543). The assumptions deal with the renowned Copernican hypothesis of considering the Earth in motion and the Sun, not affected by motion, near the center of the universe. Although Copernicus decides to omit the proofs for the sake of brevity, the deductions in the Commentariolus are supposed to be drawn from the initial seven assumptions. Questions on the nature (are they postulates or axioms?) and the logic (is there an internal rigor?) of those assumptions have yet to be fully explored. By examining Copernicus’s seven assumptions as a question of mathematical practice, it is possible to hold historical, philosophical, and logical aspects of Copernican axiomatics together and understand them as part of Copernicus’s intuition and creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acerbi F (2010) Two approaches to foundations in Greek mathematics: Apollonius and Geminus. Sci Context 23(2):151–186

    Article  MathSciNet  MATH  Google Scholar 

  • Acerbi F (2013) Aristotle and Euclid’s postulates. Class Q 63(2):680–685

    Article  Google Scholar 

  • Aristotle (2002) Posterior analytics. Translated with a commentary by Jonathan Barnes. Oxford University Press, Oxford. [1975, 1993, reprinted 2002]

    Google Scholar 

  • Blåsjö V (2014) A critique of the arguments for Maragha influence on Copernicus. J Hist Astron 45(2):183–195

    Article  MathSciNet  Google Scholar 

  • Blåsjö V (2018) A rebuttal of recent arguments for Maragha influence on Copernicus. Studia Historiae Scientiarum 17:479–497

    Article  Google Scholar 

  • Bobzien S (1996) Stoic syllogistic. Oxf Stud Anc Philos 14:133–192

    Google Scholar 

  • Bobzien S (2019) Stoic sequent logic and proof theory. Hist Philos Logic 40:234–265

    Article  MathSciNet  MATH  Google Scholar 

  • Bourbaki N (1950) The architecture of mathematics. Am Math Mon 57:221–232

    Article  MathSciNet  MATH  Google Scholar 

  • Burton HE (1945) The optics of Euclid. J Opt Soc Am A 35(5):357–372

    Article  MathSciNet  MATH  Google Scholar 

  • Cantù P, Luciano E (2021) Giuseppe Peano and his school: Axiomatics, symbolism and rigor. Philosophia Scientiæ Travaux d’histoire et de philosophie des sciences 25(1):3–14

    MathSciNet  Google Scholar 

  • Capecchi D (2018) The path to post-Galilean epistemology. Reinterpreting the birth of modern science. Springer, Cham

    Book  MATH  Google Scholar 

  • Clagett M (1976) Archimedes in the middle ages. Volume two. The translations from Greek by William of Moerbecke. The American Philosophical Society, Philadelphia

    Google Scholar 

  • Clagett M, Moody EA (eds) (1952) The medieval science of weights (Scientia de Ponderibus) treatises ascribed to Euclid, Archimedes, Thabit ibn Qurra, Jordanus de Nemore and Blasius of Parma. The University of Wisconsin Press, Madison

    MATH  Google Scholar 

  • Copernicus N (1978) Complete works. Volume 2. On the revolutions, edited by Jerzy Dobrzycki, translated by Edward Rosen with commentary. Polish Scientific Publishers, Warsaw

    Google Scholar 

  • De Risi V (2016) The development of Euclidean axiomatics. The systems of principles and the foundations of mathematics in editions of the elements in the early modern age. Arch Hist Exact Sci 70:591–676

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrzycki J (1973) The Aberdeen copy of Copernicus’s Commentariolus. J Hist Astron 4(2):124–127

    Article  MathSciNet  Google Scholar 

  • Dobrzycki J, Szczucki L (1989) On the transmission of Copernicus’s Commentariolus in the sixteenth century. J Hist Astron 20(1):25–28

    Article  MathSciNet  Google Scholar 

  • Feferman S (1999) Does mathematics need new axioms? Am Math Mon 106:99–111

    Article  MathSciNet  MATH  Google Scholar 

  • Feke J (2018) Ptolemy’s philosophy: mathematics as a way of life. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Folkert M, Kirschner S, Kühne A (eds) (2019) Nicolaus Copernicus Gesamtausgabe, Band IV, Opera minora: Die kleinen mathematisch-naturwissenschaftlichen Schriften. Editionen, Kommentare und deutsche Übersetzungen. With assistance from Uwe Lück and translations by Fritz Krafft. Walter de Gruyter Oldenbourg, Berlin

    Google Scholar 

  • Goddu A (2009) Copernicus’s Mereological vision of the universe. Early Sci Med 14:316–339

    Article  Google Scholar 

  • Goddu A (2010) Copernicus and the Aristotelian tradition. Brill, Leiden/Boston

    Book  Google Scholar 

  • Goddu A (2019) The (likely) last edition of Copernicus’s Libri revolutionum. Variants [Online] 14. http://journals.openedition.org/variants/908, https://doi.org/10.4000/variants.908

  • Heath TL (2002) The works of Archimedes. Dover, New York

    Google Scholar 

  • Henkin L, Suppes P, Tarski A (eds) (1959) The axiomatic method with special reference to geometry and physics. In: Proceedings of an International Symposium held at the University of California, Berkeley, December 26, 1957 January 4, 1958. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Hintikka J, Gruender D, Agazzi E (eds) (1981) Theory change, ancient axiomatics, and Galileo’s methodology. In: Proceedings of the 1978 Pisa conference on the history and philosophy of science, vol 1. D. Reidel Publishing Company, Dordrecht/Holland

    Google Scholar 

  • Ierodiakonou K (2006) Stoic logic. In: Gill MP, Pellegrin P (eds) A companion to ancient philosophy. Blackwell, Malden, pp 505–529

    Google Scholar 

  • Knorr WR (1981) On the early history of axiomatics: the interaction of mathematics and philosophy in Greek antiquity. In: Hintikka J, Gruender D, Agazzi E (eds) Theory change, ancient axiomatics, and Galileo’s methodology. Proceedings of the 1978 Pisa conference on the history and philosophy of science, vol 1. D. Reidel Publishing Company, Dordrecht/Holland, pp 145–186

    Google Scholar 

  • Lerner MP, Segonds AP (eds) (2015) Nicolas Copernic, De revolutionibus orbium coelestium, Des revolutions des orbes célestes. Vol. 1: Introduction by Michel-Pierre Lerner and Alain-Philippe Segonds with the collaboration of Concetta Luna, Isabelle Pantin, and Denis Savoie. Les Belles Lettres, Paris

    Google Scholar 

  • Netz R (2004) The works of Archimedes. Translated into English, together with Eutocius’ commentaries, with commentary, and critical edition of the diagrams. Volume I. The two books on the sphere and the cylinder. Cambridge University Press, Cambridge

    Google Scholar 

  • Novaes CD (2020) The dialogical roots of deduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Omodeo PD (2016) Science and medicine in the humanistic networks of the northern European renaissance. In: Omodeo PD (ed) Duncan Liddel (1561–1613) Networks of polymathy and the Northern European Renaissance. Brill, Leiden/Boston

    Chapter  Google Scholar 

  • Proclus (1970) A commentary to the first book of Euclid’s elements (trans: Morrow GR). Princeton University Press, Princeton

    Google Scholar 

  • Ragep FJ (2016) Ibn al-Shāṭir and Copernicus: the Uppsala notes revisited. J Hist Astron 47(4):395–415

    Article  Google Scholar 

  • Rosen E (1976) Copernicus’ Axioms. Centaurus 20:44–49

    Article  MathSciNet  Google Scholar 

  • Schlimm D (2013) Axioms in mathematical practice. Philos Math 3(21):37–92

    Article  MathSciNet  MATH  Google Scholar 

  • Suppes P (1993) Limitations of the axiomatic method in ancient Greek mathematical science. In: Suppes P (ed) Models and methods in the philosophy of science. Springer, Dordrecht, pp 25–40

    Google Scholar 

  • Swerdlow N (1973) The derivation and first draft of Copernicus’s planetary theory. Proc Am Philos Soc 117:423–512

    Google Scholar 

  • Swerdlow N (2017) Copernicus’s derivation of the heliocentric theory from Regiomontanus’s eccentric models of the second inequality of the superior and inferior planets. J Hist Astron 48(1):33–61

    Article  MathSciNet  Google Scholar 

  • Szabó A (1964) Transformation of mathematics into deductive science and the beginnings of its foundation on definitions and axioms. Scripta Mathematica 27:113–139

    MathSciNet  MATH  Google Scholar 

  • Taub L (1993) Ptolemy’s universe. The natural philosophical and ethical foundations of Ptolemy’s astronomy. Open Court Publishing Company, Chicago/La-Salle

    Google Scholar 

  • Valla G (1501) De expetendis et fugiendis rebus opus. Aldus Manutius, Venice

    Google Scholar 

  • Vesel M (2014) Copernicus: Platonist astronomer-philosopher. Peter Lang GmbH Internationaler Verlag der Wissenschaften, Frankfurt am Main

    Book  Google Scholar 

  • Weil A (1980) History of mathematics: why and how. In: Letho O (ed) Proceedings of the international congress of mathematicians, Helsinki 1978. Academia Scientiarum Fennica, Helsinki, pp 227–236

    Google Scholar 

  • Wittgenstein L (1956) Bemerkungen üner die Grundlagen der Mathematik – Remarks on the foundations of mathematics. In: von Wright GH, Rhees R, Anscombe GEM (eds) trans. Anscombe GEM. The M.I.T. Press, Massachusetts Institute of Technology, Cambridge, MA/London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bardi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bardi, A. (2023). Copernicus and Axiomatics. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics