Skip to main content

Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

  • Chapter
  • First Online:
Fungi in Extreme Environments: Ecological Role and Biotechnological Significance

Abstract

Thermophilic fungi have attracted considerable attention in recent years as a new source of thermostable cellulases that could be used to improve various industrial processes, such as biomass degradation and biofuel production. The cloning and expression in past years of new cellulase genes from thermophilic fungi have resulted in a better understanding of cellulose degradation mechanisms in these species. In addition, structural information has provided new insights into the function and stability of thermophilic fungal cellulases. The present review is focused on recent progress in cloning, expression, regulation, and structural characterization of thermophilic fungal cellulases as well as the current research efforts to improve their properties for better use in biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Benko Z, Drahos E, Szengyel Z, Puranen T, Vehmaanpera J, Reczey K (2007) Thermoascus aurantiacus CBHI/Cel7A production in Trichoderma reesei on alternative carbon sources. Appl Biochem Biotechnol 137(140):195–204

    PubMed  Google Scholar 

  • Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–927

    Article  CAS  PubMed  Google Scholar 

  • Blanchard S, Armand S, Couthino P, Patkar S, Vind J, Samain E, Driguez H, Cottaz S (2007) Unexpected regioselectivity of Humicola insolens Cel7B glycosynthase mutants. Carbohydr Res 342:710–716

    Article  CAS  PubMed  Google Scholar 

  • Busk PK, Lange L (2015) Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16:368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins CM, Murray PG, Denman S, Morrissey JP, Byrnes L, Teeri TT, Tuohy MG (2007) Molecular cloning and expression analysis of two distinct beta-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii. Mycol Res 111:840–849

    Article  CAS  PubMed  Google Scholar 

  • Davies GJ, Dodson GG, Hubbard RE, Tolley SP, Dauter Z, Wilson KS, Hjort C, Mikkelsen JM, Rasmussen G, Schulein M (1993) Structure and function of endoglucanase V. Nature 365:362–364

    Article  CAS  PubMed  Google Scholar 

  • Davies GJ, Ducros V, Lewis RJ, Borchert TV, Schulein M (1997) Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites. J Biotechnol 57:91–100

    Article  CAS  PubMed  Google Scholar 

  • Davies GJ, Brzozowski AM, Dauter M, Varrot A, Schulein M (2000) Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution. Biochem J 348(Pt 1):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Cassia Pereira J, Paganini Marques N, Rodrigues A, Brito de Oliveira T, Boscolo M, da Silva R, Gomes E, Bocchini Martins DA (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939

    Article  PubMed  CAS  Google Scholar 

  • de Giuseppe PO, Souza TA, Souza FH, Zanphorlin LM, Machado CB, Ward RJ, Jorge JA, Furriel RP, Murakami MT (2014) Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallogr D Biol Crystallogr 70:1631–1639

    Article  PubMed  CAS  Google Scholar 

  • Fort S, Boyer V, Greffe L, Davies G, Moroz O, Christiansen L, Schulein M, Cottaz S, Driguez H (2000) Highly efficient synthesis of beta(1->4)-oligo- and -polysaccharides using a mutant cellulase. J Am Chem Soc 122:5429–5437

    Article  CAS  Google Scholar 

  • Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46:564–574

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Huang JW, Li Q, Liu W, Ko TP, Zheng Y, Xiao X, Kuo CJ, Chen CC, Guo RT (2017) Characterization and crystal structure of a thermostable glycoside hydrolase family 45 1,4-β-endoglucanase from Thielavia terrestris. Enzym Microb Technol 99:32–37

    Article  CAS  Google Scholar 

  • Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM, Tuohy MG (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271:4495–4506

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsson M, Hansson H, Karkehabadi S, Larsson A, Stals I, Kim S, Sunux S, Fujdala M, Larenas E, Kaper T, Sandgren M (2016) Structural and functional studies of the glycoside hydrolase family 3 β-glucosidase Cel3A from the moderately thermophilic fungus Rasamsonia emersonii. Acta Crystallogr D Struct Biol 72:860–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haakana H, Miettinen-Oinonen A, Joutsjoki V, Mantyla A, Suominen P, Vehmaanpera J (2004) Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzym Microb Technol 34:159–167

    Article  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Heinzelman P, Snow CD, Smith MA, Yu X, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold FH (2009) SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 284:26229–26233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirvonen M, Papageorgiou AC (2003) Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: mechanistic implications based on the free and cellobiose-bound forms. J Mol Biol 329:403–410

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003a) Cloning of a gene encoding a thermo-stable endo-beta-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol Lett 25:657–661

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003b) Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl Microbiol Biotechnol 63:42–50

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable beta-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Ilmen M, Saloheimo A, Onnela ML, Penttila ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63:1298–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannou YA, Zeidner KM, Grace ME, Desnick RJ (1998) Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J 332:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P (2013) Cloning, expression and characterization of an ethanol tolerant GH3 beta-glucosidase from Myceliophthora thermophila. Peerj 1:e46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karnaouri AC, Topakas E, Christakopoulos P (2014) Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Appl Microbiol Biotechnol 98:231–242

    Article  CAS  PubMed  Google Scholar 

  • Karnaouri A, Muraleedharan MN, Dimarogona M, Topakas E, Rova U, Sandgren M, Christakopoulos P (2017) Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnol Biofuels 10:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kayser V, Chennamsetty N, Voynov V, Forrer K, Helk B, Trout BL (2011) Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol J 6:38–44

    Article  CAS  PubMed  Google Scholar 

  • Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11:91–100

    Article  CAS  PubMed  Google Scholar 

  • Le Costaouëc T, Pakarinen A, Várnai A, Puranen T, Viikari L (2013) The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresour Technol 143:196–203

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Qi Y, Im W (2015) Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 5:8926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YL, Li H, Li AN, Li DC (2009) Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 106:1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Limon MC, Margolles-Clark E, Benitez T, Penttila M (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198:57–63

    Article  CAS  PubMed  Google Scholar 

  • Lo Leggio L, Larsen S (2002) The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett 523:103–108

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie LF, Sulzenbacher G, Divne C, Jones TA, Woldike HF, Schulein M, Withers SG, Davies GJ (1998) Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2 Å resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochem J 335(Pt 2):409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamma D, Hatzinikolaou DG, Christakopoulos P (2004) Biochemical and catalytic properties of two intracellular [beta]-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J Mol Catal B Enzym 27:183–190

    Article  CAS  Google Scholar 

  • Meldgaard M, Svendsen I (1994) Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast. Microbiology 140(Pt 1):159–166

    Article  CAS  PubMed  Google Scholar 

  • Momeni MH, Goedegebuur F, Hansson H, Karkehabadi S, Askarieh G, Mitchinson C, Larenas EA, Ståhlberg J, Sandgren M (2014) Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea. Acta Crystallogr D Biol Crystallogr 70:2356–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriya T, Watanabe M, Sumida N, Okakura K, Murakami T (2003) Cloning and overexpression of the avi2 gene encoding a major cellulase produced by Humicola insolens FERM BP-5977. Biosci Biotechnol Biochem 67:1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Murray PG, Collins CM, Grassick A, Tuohy MG (2003) Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product. Biochem Biophys Res Commun 301:280–286

    Article  CAS  PubMed  Google Scholar 

  • Murray P, Aro N, Collins C, Grassick A, Penttila M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr Purif 38:248–257

    Article  CAS  PubMed  Google Scholar 

  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75:4853–4860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otzen DE, Christiansen L, Schülein M (1999) A comparative study of the unfolding of the endoglucanase Cel45 from Humicola insolens in denaturant and surfactant. Protein Sci 8:1878–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pack SP, Yoo YJ (2004) Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J Biotechnol 111:269–277

    Article  CAS  PubMed  Google Scholar 

  • Pakarinen A, Haven MO, Djajadi DT, Várnai A, Puranen T, Viikari L (2014) Cellulases without carbohydrate-binding modules in high consistency ethanol production process. Biotechnol Biofuels 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkkinen T, Koivula A, Vehmaanpera J, Rouvinen J (2008) Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 17:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Plecha S, Hall D, Tiquia-Arashiro SM (2013) Screening and characterization of soil microbes capable of degrading cellulose from switchgrass (Panicum virgatum L.). Environ Technol 34:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Pocas-Fonseca MJ, Silva-Pereira I, Rocha BB, Azevedo MO (2000) Substrate-dependent differential expression of Humicola grisea var. thermoidea cellobiohydrolase genes. Can J Microbiol 46:749–752

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandgren M, Gualfetti PJ, Paech C, Paech S, Shaw A, Gross LS, Saldajeno M, Berglund GI, Jones TA, Mitchinson C (2003) The Humicola grisea Cel12A enzyme structure at 1.2 Å resolution and the impact of its free cysteine residues on thermal stability. Protein Sci 12:2782–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandgren M, Berglund GI, Shaw A, Stahlberg J, Kenne L, Desmet T, Mitchinson C (2004) Crystal complex structures reveal how substrate is bound in the −4 to the +2 binding sites of Humicola grisea Cel12A. J Mol Biol 342:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Sandgren M, Stahlberg J, Mitchinson C (2005) Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog Biophys Mol Biol 89:246–291

    Article  CAS  PubMed  Google Scholar 

  • Schuerg T, Prahl JP, Gabriel R, Harth S, Tachea F, Chen CS, Miller M, Masson F, He Q, Brown S, Mirshiaghi M, Liang L, Tom LM, Tanjore D, Sun N, Pray TR, Singer SW (2017) Xylose induces cellulase production in Thermoascus aurantiacus. Biotechnol Biofuels 10:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaikh FA, Withers SG (2008) Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochem Cell Biol 86:169–177

    Article  CAS  PubMed  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Rocha R, Castro LS, Antoniêto AC, Guazzaroni ME, Persinoti GF, Silva RN (2014) Deciphering the cis-regulatory elements for XYR1 and CRE1 regulators in Trichoderma reesei. PLoS One 9:e99366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suto M, Tomita F (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J Biosci Bioeng 92:305–311

    Article  CAS  PubMed  Google Scholar 

  • Szijarto N, Siika-Aho M, Tenkanen M, Alapuranen M, Vehmaanpera J, Reczey K, Viikari L (2008) Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 136:140–147

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1996) Cloning, sequencing, and expression of the cellulase genes of Humicola grisea var. thermoidea. J Biotechnol 50:137–147

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998) Isolation of the gene and characterization of the enzymatic properties of a major exoglucanase of Humicola grisea without a cellulose-binding domain. J Biochem 124:717–725

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999a) Comparison of gene structures and enzymatic properties between two endoglucanases from Humicola grisea. J Biotechnol 67:85–97

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999b) Molecular cloning and expression of the novel fungal beta-glucosidase genes from Humicola grisea and Trichoderma reesei. J Biochem 125:728–736

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Ohno M, Hidaka M, Nakamura A, Masaki H, Uozumi T (2007) Correlation between cellulose binding and activity of cellulose-binding domain mutants of Humicola grisea cellobiohydrolase 1. FEBS Lett 581:5891–5896

    Article  CAS  PubMed  Google Scholar 

  • Taylor TJ, Vaisman II (2010) Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol 10(Suppl 1):S5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiquia SM, Mormile M (2010) Extremophiles—a source of innovation for industrial and environmental applications. Environ Technol 31(8–9):823

    Article  CAS  PubMed  Google Scholar 

  • Trivedi S, Gehlot HS, Rao SR (2006) Protein thermostability in Archaea and Eubacteria. Genet Mol Res 5:816–827

    CAS  PubMed  Google Scholar 

  • Vaheri M, Leisola M, Kauppinen V (1979) Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnol Lett 1:41–46

    Article  CAS  Google Scholar 

  • Valjakka J, Rouvinen J (2003) Structure of 20K endoglucanase from Melanocarpus albomyces at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr 59:765–768

    Article  PubMed  CAS  Google Scholar 

  • Van Petegem F, Vandenberghe I, Bhat MK, Van Beeumen J (2002) Atomic resolution structure of the major endoglucanase from Thermoascus aurantiacus. Biochem Biophys Res Commun 296:161–166

    Article  PubMed  CAS  Google Scholar 

  • Varrot A, Frandsen TP, von Ossowski I, Boyer V, Cottaz S, Driguez H, Schulein M, Davies GJ (2003) Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure 11:855–864

    Article  CAS  PubMed  Google Scholar 

  • Vlasenko E, Schülein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    Article  CAS  PubMed  Google Scholar 

  • Voutilainen SP, Boer H, Linder MB, Puranen T, Rouvinen J, Vehmaanperä J, Koivula A (2007) Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme Microbiol Technol 41:234–243

    Article  CAS  Google Scholar 

  • Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikari L, Vehmaanpera J, Koivula A (2008) Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng 101:515–528

    Article  CAS  PubMed  Google Scholar 

  • Voutilainen SP, Boer H, Alapuranen M, Janis J, Vehmaanpera J, Koivula A (2009) Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 83:261–272

    Article  CAS  PubMed  Google Scholar 

  • Voutilainen SP, Murray PG, Tuohy MG, Koivula A (2010) Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 23:69–79

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Peng YJ, Zhang LQ, Li AN, Li DC (2012) Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl Microbiol Biotechnol 95:1469–1478

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  CAS  PubMed  Google Scholar 

  • Wu I, Arnold FH (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng 110:1874–1883

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Bai Y, Cui Y, Xu X, Qian L, Shi P, Zhang W, Luo H, Zhan X, Yao B (2016) Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1. Sci Rep 6:27062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Li J, Zhang W, Huang H, Shi P, Luo H, Liu B, Zhang Y, Zhang Z, Fan Y, Yao B (2015) A neutral thermostable β-1,4-glucanase from Humicola insolens Y1 with potential for applications in various industries. PLoS One 10:e0124925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang F, Gong Y, Liu G, Zhao S, Wang J (2015) Enhancing cellulase production in thermophilic fungus Myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression. J Microbiol Biotechnol 25:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Yennamalli RM, Rader AJ, Wolt JD, Sen TZ (2011) Thermostability in endoglucanases is fold-specific. BMC Struct Biol 11:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tang B, Du G (2017) Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer. Sci Rep 7:10161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou QZ, Ji P, Zhang JY, Li X, Han C (2017) Characterization of a novel thermostable GH45 endoglucanase from Chaetomium thermophilum and its biodegradation of pectin. J Biosci Bioeng 124:271–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support by the Chinese National Program for High Technology, Research and Development, the Chinese Project of Transgenic Organisms, and the National Department Public Benefit Research Foundation is acknowledged. ACP thanks Biocenter Finland for infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassios C. Papageorgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, DC., Papageorgiou, A.C. (2019). Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_20

Download citation

Publish with us

Policies and ethics