Skip to main content

The Nonlinear Pattern of Sea Levels: A Case Study of North America

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications

Abstract

Here I analyze the relative sea level signals from the tide gauges of North America. Linear and parabolic fittings are used to compute relative rates of rise and accelerations. There are 20 long-term-trend (LTT) tide gauges along the (Pacific) West Coast of North America. The average relative rate of rise is −0.38 mm/year, and the average acceleration is +0.0012 mm/year2. There are 33 LTT tide gauges of the (Atlantic) East Coast of North America. The average relative sea level rise is 2.22 mm/year, and the average acceleration is +0.0027 mm/year2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chambers, D., Merrifield, M. A., & Nerem, R. S. (2012). Is there a 60-year oscillation in global mean sea level? Geophysical Research Letters, 39, 18.

    Article  Google Scholar 

  2. Schlesinger, M., & Ramankutty, N. (1994). An oscillation in the global climate system of period 65-70 years. Nature, 367, 723–726.

    Article  Google Scholar 

  3. Galloway, D. L., Jones, D. R. & Ingebritsen, S. E. (1999). Land subsidence in the United States (Vol. 1182). United States Geological Survey. Retrieved from https://pubs.usgs.gov/circ/circ1182/.

  4. Galloway, D. L., Bawden, G. W., Leake, S. A., & Honegger D. G. (2008). Land subsidence hazards. In R. L. Baum, D. L. Galloway, & E. L. Harp (Eds.), Landslide and land subsidence hazards to pipelines (chapter 2). U.S. Geological Survey Open-File Report 2008-1164. Retrieved from http://pubs.usgs.gov/of/2008/1164/.

  5. National Research Council. (1991). Mitigating losses from land subsidence in the United States (58p). Washington, DC: National Academy Press.

    Google Scholar 

  6. Davis, G. H. (1987). Land subsidence and sea level rise on the Atlantic Coastal Plain of the United States. Environmental Geology and Water Sciences, 10(2), 67–80.

    Article  Google Scholar 

  7. Johnson, D. W. (1917). Is the Atlantic coast sinking? Geographical Review, 3(2), 135–139.

    Article  Google Scholar 

  8. Karegar, M. A., Dixon, T. H., & Engelhart, S. E. (2016). Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophysical Research Letters, 43(7), 3126–3133.

    Article  Google Scholar 

  9. United States Geological Survey. (2000). Land subsidence in the United States. United States Geological Survey Fact Sheet-087-00. Retrieved from https://water.usgs.gov/ogw/gwrp/fs2001/test1/.

  10. Galloway, D. L., & Sneed, M. (2013). Analysis and simulation of regional subsidence accompanying groundwater abstraction and compaction of susceptible aquifer systems in the USA. Boletín de la Sociedad Geológica Mexicana, 65(1), 123–136.

    Article  Google Scholar 

  11. Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. (2016). MIDAS robust trend estimator for accurate GNSS station velocities without step detection. Journal of Geophysical Research, 121. https://doi.org/10.1002/2015JB012552.

    Google Scholar 

  12. Wöppelmann, G., & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54(1), 64–92.

    Article  Google Scholar 

  13. Houston, J. R., & Dean, R. G. (2011). Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. Journal of Coastal Research, 27, 409–417.

    Article  Google Scholar 

  14. Boretti, A. (2012). Short term comparison of climate model predictions and satellite altimeter measurements of sea levels. Coastal Engineering, 60, 319–322.

    Article  Google Scholar 

  15. Boretti, A. (2012). Is there any support in the long term tide gauge data to the claims that parts of Sydney will be swamped by rising sea levels? Coastal Engineering, 64, 161–167.

    Article  Google Scholar 

  16. Parker, A. (2013). Sea level trends at locations of the United States with more than 100 years of recording. Natural Hazards, 65(1), 1011–1021.

    Article  Google Scholar 

  17. Parker, A., & Ollier, C. D. (2017). California sea level rise: Evidence based forecasts vs. model predictions. Ocean & Coastal Management, 149, 198–209.

    Article  Google Scholar 

  18. Parker, A., & Ollier, C. D. (2017). Short-term tide gauge records from one location are inadequate to infer global sea-level acceleration. Earth Systems and Environment, 1(2), 17.

    Article  Google Scholar 

Download references

Acknowledgment

The author received no funding and declares no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Boretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boretti, A. (2020). The Nonlinear Pattern of Sea Levels: A Case Study of North America. In: Jazar, R., Dai, L. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-18963-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18963-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18962-4

  • Online ISBN: 978-3-030-18963-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics