Skip to main content

Abstract

Losses caused by the coffee berry borer, Hypothenemus hampei (Ferrari) have been decreasing coffee production. This pest causes annual losses over U.S. $500 million. The chemical insecticides have been used to Coffee berry borer control. Due to their effects of pesticides on human and environmental health, some countries decided to ban the use of endosulfan. Another hand, biological insecticide based on entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin became one of the key measures in coffee integrate pest management. Release by spray application requires high concentrations of B. bassiana, and this enhances the cost of CBB control. Thus, developing new environmentally friendly cultivation and cost-efficient methods to manage the coffee berry borer has become essential. In response to this, a novel method for the application of microbial control agents against agricultural pests using bee pollinators has been developed. In this chapter, we discuss the potential use of managed bees as vectors of B. bassiana to coffee berry borer control and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shaara HF (2014) The foraging behaviour of honey bees, Apis mellifera: a review. Vet Med 59:1–10

    Google Scholar 

  • Al-Mazra’awi MS (2007) Impact of the entomopathogenic fungus Beauveria bassiana on the honey bee, Apis mellifera (Hymenoptera: Apidae). World J Agric Sci 3(1):7–11

    Google Scholar 

  • Al-Mazra’awi MS, Shipp JL, Broadbent AB, Kevan PG (2006) Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control of tarnished plant bug (Hemiptera: Miridae) on canola. Environ Entomol 35(6):1569–1577

    Google Scholar 

  • Al-Mazra’awi MS, Kevan PG, Shipp L (2007) Development of Beauveria bassiana dry formulation for vectoring by honey bees Apis mellifera (Hymenoptera: Apidae) to the flowers of crops for pest control. Biocontrol Sci Tech 17(7):733–741

    Google Scholar 

  • Alves SB (1998) Fungos entomopatogênicos. In: Alves SB (ed) Controle microbiano de insetos. FEALQ. Piracicaba, Brazil, pp 289–381

    Google Scholar 

  • Alves SB, Marchini LC, Pereira RM, Baumgratz LL (1996) Effects of some insect pathogens on the Africanized honey bee, Apis mellifera L. (Hym., Apidae). J Appl Entomol 120:559–564

    Google Scholar 

  • Alvim PT (1985) Coffee. In: Halevy AH (ed) Handbook of flowering, vol 2. CRC Press, Boca Raton, pp 308–316

    Google Scholar 

  • Aristizábal LF (2005) Investigación participativa en el manejo integrado de la broca del café. In: Memorias XXXII congreso sociedad colombiana de entomología. Socolen, Ibagué, pp 27–29

    Google Scholar 

  • Aristizábal LF, Bustillo AE, Arthurs SP (2016) Integrated pest management of coffee berry borer: strategies from Latin America that could be useful for coffee farmers in Hawaii. Insects 7:E6

    Google Scholar 

  • Bacon C (2005) Confronting the coffee crisis: can fair trade, organic and specialty coffees reduce small-scale farmer vulnerability in northern Nicaragua? World Dev 33(3):497–511. https://doi.org/10.1016/j.worlddev.2004.10.002

    Article  Google Scholar 

  • Badilla F, Ramírez BW (1991) Polinización de café por Apis mellifera L. y otros insectos en Costa Rica. Turrialba 41(3):285–288

    Google Scholar 

  • Barrera JF (2008) Coffee pests and their management. In: Encyclopedia of entomology. Springer Netherlands, Dordrecht, pp 961–998

    Google Scholar 

  • Benavides P, Góngora C, Bustillo A (2012) IPM program to control coffee berry borer Hypothenemus hampei, with emphasis on highly pathogenic mixed strains of Beauveria bassiana, to overcome insecticide resistance in Colombia. In: Perveen F (ed) Insecticides – advances in integrated pest management. InTech, Rijeka, pp 511–540. https://doi.org/10.5772/28740

    Chapter  Google Scholar 

  • Boreux V, Kushalappa CG, Vaast P, Ghazoul J (2013) Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems. Proc Natl Acad Sci 110(21):8387–8392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bos MM, Veddeler D, Bogdanski AK, Klein AM, Tscharntke T, Steffan-Dewenter I, Tylianakis JM (2007) Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination. Ecol Appl 17(6):1841–1849

    PubMed  Google Scholar 

  • Brazil (2015) Ministério da Agricultura, Pecuária e Abastecimento. Portarias no 11 e 12 de 23 de janeiro de 2015. Diário Oficial da República Federativa do Brasil, Brasília, 26 Jan. 2015. Seção 1. http://pesquisa.in.gov.br/imprensa/servlet/INPDFViewer?jornal=1&pagina=2&data=26/01/2015&captchafield=firistAccess. Accessed 17 Jan 2018

  • Brun LO, Marcillaud C, Gaudichon V, Suckling DM (1989) Endosulfan resistance in Hypothenemus hampei (Coleoptera: Scolytidae) in New Caledonia. J Econ Entomol 82(5):1312–1316

    Google Scholar 

  • Bustillo-Pardey AE (2002) El manejo de cafetales y su relacion con el control de la broca del café en Colombia. Boletin Técnico Cenicafé 24:40

    Google Scholar 

  • Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Tech 8:533–538

    Google Scholar 

  • Carreck NL, Butt TM, Clark SJ, Ibrahim L, Isger EA, Pell JK, Williams IH (2007) Honey bees can disseminate a microbial control agent to more than one inflorescence pest of oilseed rape. Biocontrol Sci Tech 17(2):179–191

    Google Scholar 

  • Castaño A, Benavides P, Baker PS (2005) Dispersión de Hypothenemus hampei en cafetales zoqueados. Revista Cenicafe (Colombia) 56(2):142–150

    Google Scholar 

  • Classen A, Peters MK, Ferger SW, Helbig-Bonitz M, Schmack JM, Maassen G, Steffan-Dewenter I (2014) Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc R Soc Lond B Biol Sci 281(1779):20133148

    Google Scholar 

  • Cure JR, Santos RHS, Moraes JC, Vilela EF, Gutierrez AP (1998) Phenology and population dynamics of the coffee berry borer Hypothenemus hampei (Ferr.) in relation to the phenological stages of the berry. Anais da Sociedade Entomológica do Brasil 27:325–335

    Google Scholar 

  • DaMatta FM, Ronch CP, Maestri M, Barros RS (2007) Ecophysiology of coffee growth and production. Braz J Plant Physiol 19(4):485–510

    CAS  Google Scholar 

  • Damon A (2000) A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull Entomol Res 90:453–465

    CAS  PubMed  Google Scholar 

  • Daviron B, Ponte S (2005) The coffee paradox: global markets, commodity trade and the elusive promise of development. Zed Books, London

    Google Scholar 

  • Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) Annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152(4):465–512. https://doi.org/10.1111/j.1095-8339.2006.00584.x

    Article  Google Scholar 

  • Dedej S, Delaplane KS, Scherm H (2004) Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biol Control 31:422–427

    Google Scholar 

  • Donald PF (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18(1):17–38. https://doi.org/10.1111/j.1523-1739.2004.01803.x

    Article  Google Scholar 

  • FAO (2015) Statistical pocketbook coffee. http://www.fao.org/3/a-i4985e.pdf

  • Fischer D, Moriarty T (2011) Pesticide risk assessment for pollinators: summary of a SETAC Pellston Workshop. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  • Free JB (1993) Insect pollination of crops, 2nd edn. Academic, London

    Google Scholar 

  • Henry D, Feola G (2013) Pesticide-handling practices of smallholder coffee farmers in eastern Jamaica. J Agric Rural Dev Trop Subtrop 114(1):59–67

    Google Scholar 

  • Hipólito J, Boscolo D, Viana BF (2018) Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agric Ecosyst Environ 256:218–225

    Google Scholar 

  • Hokkanen HM, Menzler-Hokkanen I, Lahdenpera ML (2015) Managing bees for delivering biological control agents and improved pollination in berry and fruit cultivation. Sustain Agric Res 4(3):89

    Google Scholar 

  • Infante F (2018) Pest management strategies against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae). J Agric Food Chem 66(21):5275–5280

    CAS  PubMed  Google Scholar 

  • Infante F, Castillo A, Pérez J, Vega FE (2013) Field-cage evaluation of the parasitoid Phymastichus coffea as a natural enemy of the coffee berry borer, Hypothenemus hampei. Biol Control 67(3):446–450

    Google Scholar 

  • ICO (International Coffee Organization) (2016) Coffee Market Report – February 2016. Available from: http://www.ico.org/documents/cy2015-16/cmr-0216-e.pdf

  • Janssen MPM (2011) Endosulfan. A closer look at the arguments against a worldwide phase out. RIVM letter report 601356002/2011, National Institute for Public Health and the Environment. Ministry of Health, Welfare and Sport: Bilthoven, The Netherlands

    Google Scholar 

  • Johnson KB, Stockwell VO, Mclaughlin RJ (1993) Effect of antagonistic bacteria on the establishment of honey bee-dispersed Erwinia amylovora in pear blossoms and on fire blight control. Phytopathology 83:995–1002

    Google Scholar 

  • Kevan PG, Sutton JC, Tam L, Boland G, Broadbent B, Thomson SV, Brewer GJ (2003, January) Using pollinators to deliver biological control agents against crop pests. In: Pesticide formulations and delivery systems: meeting the challenges of the current crop protection industry. ASTM International, West Conshohocken

    Google Scholar 

  • Kevan PG, Kapongo J-P, Al-mazra’awi M, Shipp L (2008) Honey bees, bumble bees, and biocontrol: new alliances between old friends. In: James RR, PittsSinger TL (eds) Bee pollination in agricultural ecosystems. Oxford University Press, New York, pp 65–79

    Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2003a) Pollination of Coffea canephora in relation to local and regional agroforestry management. J Appl Ecol 40(5):837–845. https://doi.org/10.1046/j.1365-2664.2003.00847.x

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2003b) Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). Am J Bot 90(1):153–157. https://doi.org/10.3732/ajb.90.1.153

    Article  PubMed  Google Scholar 

  • Kovach J, Petzoldt R, Harman GE (2000) Use of honeybees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for Botrytis control. Biol Control 18:235–242

    Google Scholar 

  • Krishnan S, Kushalappa CG, Shaanker RU, Ghazoul J (2012) Status dos polinizadores e sua eficiência no café em um mosaico de paisagem fragmentada no sul da Índia. Ecologia Básica e Aplicada 13(3):277–285

    Google Scholar 

  • Lubick N (2010) Endosulfan’s exit: US EPA pesticide review leads to a ban

    Google Scholar 

  • Maccagnani B, Mocioni M, Ladurner E, Gullino ML, Maini S (2005) Investigation of hive mounted devices for the dissemination of microbiological preparations by Bombus terrestris. Bull Insectol 58:3–8

    Google Scholar 

  • Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32(11):177

    PubMed  Google Scholar 

  • Meikle WG, Mercadier G, Holst N, Girod V (2008) Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health. Exp Appl Acarol 46:105–117

    PubMed  Google Scholar 

  • Mommaerts V, Smagghe G (2011) Entomovectoring in plant protection. Arthropod-Plant Interact 5:81–95

    Google Scholar 

  • Mommaerts V, Put K, Vandeven J, Jans K, Sterk G, Hoffmann L, Smagghe G (2010) Development of a new dispenser for bumblebees and evaluation to disseminate microbiological control agents in strawberry in the greenhouse. Pest Manag Sci 66:1199–1207

    CAS  PubMed  Google Scholar 

  • Mota LHC, Silva WD, Sermarini RA, Demétrio CGB, Bento JMS, Delalibera Jr I (2017) Autoinoculation trap for management of Hypothenemus hampei (Ferrari) with Beauveria bassiana (Bals.) in coffee crops. Biol Control 111:32–39

    Google Scholar 

  • Nakai M, Lacey L (2017) Microbial control of insect pests of tea and coffee. In: Burges HD, Hussey NW (eds) Microbial control of insect and mite pests from theory to practices. Academic, New York, p 275

    Google Scholar 

  • Ngo HT, Mojica AC, Packer L (2011) Coffee plant–pollinator interactions: a review. Can J Zool 89(8):647–660

    Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148. https://doi.org/10.3389/fpubh.2016.00148

  • Nilsson U, Gripwall E (1999) Influence of application technique on the viability of the biological control agents Verticillium lecanii and Stenernema feltiae. Crop Prot 18:53–59

    Google Scholar 

  • Nunes DO (2017) Polinização de Coffea arabica: testando a efetividade e eficiência de Apis mellifera. Trabalho de Conclusão de curso- Instituto de Biologia, Universidade Federal da Bahia

    Google Scholar 

  • Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2013) Economic impact of exotic insect pests in Brazilian agriculture. J Appl Entomol 137:1–15

    Google Scholar 

  • Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54

    Google Scholar 

  • Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honeybees for applying the biocontrol agent Gliocladium rosea to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14:117–129

    Google Scholar 

  • Potrich M, da Silva RT, Maia FM, Lozano ER, Rossi RM, Colombo FC et al (2018) Effect of entomopathogens on Africanized Apis mellifera L.(Hymenoptera: Apidae). Rev Bras Entomol 62(1):23–28

    Google Scholar 

  • Raw A, Free JB (1977) The pollination of coffee (Coffea arabica) by honeybees. Trop Agric 54:365–370

    Google Scholar 

  • Reiger M (2006) Introduction to fruit crops. Hawthorn Press Inc, New York

    Google Scholar 

  • Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18(5):1262–1271. https://doi.org/10.1111/j.1523-1739.2004.00227.x

    Article  Google Scholar 

  • Roubik DW (2002a) African honeybees augment neotropical coffee yield. In: Kevan PG, Imperatriz-Fonseca VL (eds) Pollinating bees: the conservation link between agriculture and nature. Ministry of Environment, Brasilia, pp 255–266

    Google Scholar 

  • Roubik DW (2002b) The value of bees to the coffee harvest. Nature (London), 417(6890): 708. https://doi.org/10.1038/417708a. PMID: 12066176

  • Saturni FT, Jaffé R, Metzger JP (2016) Landscape structure influences bee community and coffee pollination at different spatial scales. Agric Ecosyst Environ 235:1–12. https://doi.org/10.1016/j.agee.2016.10.008

    Article  Google Scholar 

  • Shafir S, Dag A, Bilu A, Abu-Toamy M, Elad Y (2006) Honeybee dispersal of the biocontrol agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. Eur J Plant Pathol 116:119–128

    CAS  Google Scholar 

  • Silva MDC, Varzea V, Guerra-Guimaraes L, Azinheira HG, Fernandez D, Petitot AS et al (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18(1):119–147

    CAS  Google Scholar 

  • Ureña J, Chuncho CGM (2008) Utilización de abejas para la dispersión de Beauveria bassiana en el control biológico de la broca del café. Naturaleza y Desarrollo Agrario. Revista Científica del Área Agropecuaria y de Recursos Naturales Renovables, Universidad Nacional de Loja, Loja, Ecuador 1(1):30–37

    Google Scholar 

  • Veddeler D, Klein AM, Tscharntke T (2006) Contrasting responses of bee communities to coffee flowering at different spatial scales. Oikos 112(3):594–601. https://doi.org/10.1111/j.0030-1299.2006.14111.x

    Article  Google Scholar 

  • Vega FE, Infante F, Johnson AJ (2015) The genus Hypothenemus, with emphasis on H. hampei, the coffee berry borer. In: Vega FE, Hoffstetter RW (eds) Bark beetles: biology and ecology of native and invasive species. Academic, San Diego, pp 427–494

    Google Scholar 

  • Vergara C, Contreras J, Ferrari R, Paredes J (2008) Polinización entomófila. In: Manson RH, Hernandez-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología A.C. (INECOL) e Instituto Nacional de Ecología, México

    Google Scholar 

  • Vieira HD (2008) Chapter 1. Coffee: the plant and its cultivation. In: Souza RM (ed) Plant–parasitic nematodes of coffee. Springer Science, Dordrecht, pp 3–18

    Google Scholar 

  • Willmer PG, Stone GN (1989) Incidence of entomophilous pollination of lowland coffee (Coffea canephora): the role of leaf cutter bees in Papua New Guinea. Entomol Exp Appl 50:113–124

    Google Scholar 

  • Willson KC (1999) Coffee, cocoa and tea. CABI Publishing, Cambridge

    Google Scholar 

  • Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39:449–462

    Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Tech 17(6):553–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macedo, J., Viana, B., Freitas, B., Medeiros, A., Kevan, P.G., Vergara, C.H. (2020). The Potential of Bee Vectoring on Coffee in Brazil. In: Smagghe, G., Boecking, O., Maccagnani, B., Mänd, M., Kevan, P. (eds) Entomovectoring for Precision Biocontrol and Enhanced Pollination of Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-18917-4_10

Download citation

Publish with us

Policies and ethics