Skip to main content

Immunological Treatment in Gastrointestinal Cancers

  • Chapter
  • First Online:
Textbook of Gastrointestinal Oncology

Abstract

Colorectal cancer is a common malignancy around the world, with an important mortality rate among other malignancies. The cornerstone of treatment is curative surgery as 40% of patients are diagnosed with localized disease. Patients who were diagnosed with advanced disease have a dismal prognosis. Conventional chemotherapy is the standard treatment in an advanced setting with important development of strategies that combine biological agents (bevacizumab, cetuximab, panitumumab, ramucirumab, etc.). Recently the better understanding of immune system interaction in carcinogenesis has led to the development of new therapeutic strategies based on immune modulators that activate the immune system. With the current evidence we have, probably a combination of these strategies will result in better outcomes in the fight against this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray F, Ren JS, Masuyer E FJ. GLOBOCAN 2012 v1.0. International Agency for Research on Cancer, World Health Organization, Lyon, France; 2013. http://globocan.iarc.fr/Default.aspx Accessed 18 Mar 2016.

  2. Las Cifras del Cáncer en España en 2016. Accessed 18 Mar 2016. http://seom.org/seomcms/images/stories/recursos/LA_CIFRAS_DEL_CANCER_EN_2016.pdf.

  3. American Cancer Society. Colorectal cancer facts & figures 2014–2016. Atlanta: American Cancer Society. 2014. Accessed 18 Mar 2016. http://www.cancer.org/acs/groups/content/documents/document/acspc-042280.pdf.

  4. Hellinger MD, Santiago CA. Reoperation for recurrent colorectal cancer. Clin Colon Rectal Surg. 2006;19(4):228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kocián P, Šedivcová M, Drgáč J, Cerná K, Hoch J, Kodet R, et al. Tumor-infiltrating lymphocytes and dendritic cells in human colorectal cancer: their relationship to KRAS mutational status and disease recurrence. Hum Immunol. 2011;72(11):1022–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez-Pons M, Cruz-Correa M. Colorectal cancer biomarkers: where are we now? Biomed Res Int. 2015;2015:149014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deschoolmeester V, Baay M, Specenier P, Lardon F, Vermorken JB. A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist AlphaMed Press. 2010;15(7):699–731.

    Article  Google Scholar 

  8. Pernot S, Terme M, Voron T, Colussi O, Marcheteau E, Tartour E, et al. Colorectal cancer and immunity: what we know and perspectives. World J Gastroenterol. 2014;20(14):3738–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frisch M. Association of cancer with AIDS-related immunosuppression in adults. JAMA. 2001;285(13):1736–45.

    Article  CAS  PubMed  Google Scholar 

  10. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11.

    Article  CAS  PubMed  Google Scholar 

  11. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    Article  CAS  PubMed  Google Scholar 

  12. Markman JL, Shiao SL. Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol. 2015;6(1):208–23.

    PubMed  PubMed Central  Google Scholar 

  13. Malmberg K-J, Bryceson YT, Carlsten M, Andersson S, Björklund A, Björkström NK, et al. NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol Immunother. 2008;57(10):1541–52.

    Article  CAS  PubMed  Google Scholar 

  14. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D, et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood Am Soc Hematol. 2005;105(1):251–8.

    CAS  Google Scholar 

  15. Terme M, Fridman WH, Tartour E. NK cells from pleural effusions are potent antitumor effector cells. Eur J Immunol. 2013;43(2):331–4.

    Article  CAS  PubMed  Google Scholar 

  16. Coca S, Perez-Piqueras J, Martinez D, Colmenarejo a SM a, Vallejo C, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 1997;79(12):2320–8.

    Article  CAS  PubMed  Google Scholar 

  17. Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H, et al. Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res. 2005;11(20):7322–7.

    Article  CAS  PubMed  Google Scholar 

  18. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  19. Edin S, Wikberg ML, Rutegård J, Oldenborg P-A, Palmqvist R. Phenotypic skewing of macrophages in vitro by secreted factors from colorectal cancer cells. PLoS One. 2013;8(9):e74982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Erreni M, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron. 2011;4(2):141–54.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobs J, Smits E, Lardon F, Pauwels P, Deschoolmeester V. Immune checkpoint modulation in colorectal cancer: what’s new and what to expect. J Immunol Res. 2015;2015:158038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 8(3).

    Article  CAS  PubMed Central  Google Scholar 

  23. Obermajer N, Dahlke MH. (Compl)Ex-Th17-Treg cell inter-relationship. Oncoimmunology. 2015;5(1):e1040217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yao Y, Jiang Q, Jiang L, Wu J, Zhang Q, Wang J, et al. Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling. Oncotarget. 2016;7(15):20549–60.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Amin M, Lockhart AC. The potential role of immunotherapy to treat colorectal cancer. Expert Opin Investig Drugs. 2015;24(3):329–44.

    Article  CAS  PubMed  Google Scholar 

  26. Mocellin S, Rossi CR, Lise M, Nitti D. Colorectal cancer vaccines: principles, results, and perspectives. Gastroenterology. 2004;127(6):1821–37.

    Article  CAS  PubMed  Google Scholar 

  27. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012;12(4):307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keenan BP, Jaffee EM. Whole cell vaccines--past progress and future strategies. Semin Oncol. 2012;39(3):276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koido S, Ohkusa T, Homma S, Namiki Y, Takakura K, Saito K, et al. Immunotherapy for colorectal cancer. World J Gastroenterol. 2013;19(46):8531–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoover HC, Brandhorst JS, Peters LC, Surdyke MG, Takeshita Y, Madariaga J, et al. Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J Clin Oncol. 1993;11(3):390–9.

    Article  PubMed  Google Scholar 

  31. Harris J, Ryan L, Hoover H, Stuart R, Oken M, Benson A, et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol. 2000;18(1):148–57.

    Article  CAS  PubMed  Google Scholar 

  32. Vermorken J, Claessen A, van Tinteren H, Gall H, Ezinga R, Meijer S, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet. 1999;353(9150):345–50.

    Article  CAS  PubMed  Google Scholar 

  33. Procaccio L, Schirripa M, Fassan M, Vecchione L, Bergamo F, Prete AA, et al. Immunotherapy in gastrointestinal cancers. Biomed Res Int. 2017;2017:4346576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL. Active specific immunotherapy with a {beta}-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res. 2002;8(7):2044–51.

    CAS  PubMed  Google Scholar 

  35. Bilusic M, Heery CR, Arlen PM, Rauckhorst M, Apelian D, Tsang KY, et al. Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunol Immunother. 2014;63(3):225–34.

    Article  CAS  PubMed  Google Scholar 

  36. Posner MC, Niedzwiecki D, Venook AP, Hollis DR, Kindler HL, Martin EW, et al. A phase II prospective multi-institutional trial of adjuvant active specific immunotherapy following curative resection of colorectal cancer hepatic metastases: cancer and leukemia group B study 89903. Ann Surg Oncol. 2008;15(1):158–64.

    Article  PubMed  Google Scholar 

  37. Miyagi Y, Imai N, Sasatomi T, Yamada A, Mine T, Katagiri K, et al. Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin Cancer Res. 2001;7(12):3950–62.

    CAS  PubMed  Google Scholar 

  38. Speetjens FM, Kuppen PJK, Welters MJP, Essahsah F, Voet van den Brink AMEG, Lantrua MGK, et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res. 2009;15(3):1086–95.

    Article  CAS  PubMed  Google Scholar 

  39. Kimura T, McKolanis JR, Dzubinski LA, Islam K, Potter DM, Salazar AM, et al. MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila). 2013;6(1):18–26.

    Article  CAS  Google Scholar 

  40. denoue S, Hirohashi Y, Torigoe T, Sato Y, Tamura Y, Hariu H, et al. A potent immunogenic general cancer vaccine that targets survivin, an inhibitor of apoptosis proteins. Clin Cancer Res. 2005;11(4):1474–82.

    Article  Google Scholar 

  41. Schulze T, Kemmner W, Weitz J, Wernecke KD, Schirrmacher V, Schlag PM. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunol Immunother. 2009;58(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  42. Karlsson M, Marits P, Dahl K, Dagöö T, Enerbäck S, Thörn M, et al. Pilot study of sentinel-node-based adoptive immunotherapy in advanced colorectal cancer. Ann Surg Oncol. 2010;17(7):1747–57.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhen Y-H, Liu X-H, Yang Y, Li B, Tang J-L, Zeng Q-X, et al. Phase I/II study of adjuvant immunotherapy with sentinel lymph node T lymphocytes in patients with colorectal cancer. Cancer Immunol Immunother. 2015;64:1083–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6.

    Article  CAS  PubMed  Google Scholar 

  45. Correale P, Tagliaferri P, Fioravanti A, Del Vecchio MT, Remondo C, Montagnani F, et al. Immunity feedback and clinical outcome in colon cancer patients undergoing chemoimmunotherapy with gemcitabine + FOLFOX followed by subcutaneous granulocyte macrophage colony-stimulating factor and aldesleukin (GOLFIG-1 Trial). Clin Cancer Res. 2008;14(13):4192–9.

    Article  CAS  PubMed  Google Scholar 

  46. Correale P, Botta C, Rotundo MS, Guglielmo A, Conca R, Licchetta A, et al. Gemcitabine, oxaliplatin, levofolinate, 5-fluorouracil, granulocyte-macrophage colony-stimulating factor, and interleukin-2 (GOLFIG) versus FOLFOX chemotherapy in metastatic colorectal cancer patients: the GOLFIG-2 multicentric open-label randomized phase. J Immunother. 2014;37(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  47. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.

    Article  CAS  PubMed  Google Scholar 

  48. Rozali EN, Hato SV, Robinson BW, Lake RA, Lesterhuis WJ. Programmed death ligand 2 in cancer-induced immune suppression. Clin Dev Immunol. 2012;2012:656340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Droeser RA, Hirt C, Viehl CT, Frey DM, Nebiker C, Huber X, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer. 2013;49(9):2233–42.

    Article  CAS  PubMed  Google Scholar 

  52. Heinimann K. Toward a molecular classification of colorectal cancer: the role of microsatellite instability status. Front Oncol. 2013;3:272.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–9.

    Article  CAS  PubMed  Google Scholar 

  56. Boland PM, Hutson A, Maguire O, Minderman H, Fountzilas C, Iyer RV. A phase Ib/II study of cetuximab and pembrolizumab in RAS-wt mCRC. J Clin Oncol. 2018;36. (suppl 4S; abstr 834).

    Article  Google Scholar 

  57. Betts G, Jones E, Junaid S, El-Shanawany T, Scurr M, Mizen P, et al. Suppression of tumour-specific CD4+ T cells by regulatory T cells is associated with progression of human colorectal cancer. Gut. 2012;61(8):1163–71.

    Article  CAS  PubMed  Google Scholar 

  58. Chung KY, Gore I, Fong L, Venook A, Beck SB, Dorazio P, et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol. 2010;28(21):3485–90.

    Article  CAS  PubMed  Google Scholar 

  59. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what's next? Curr Opin Immunol. 2015;33:23–35.

    Article  CAS  PubMed  Google Scholar 

  61. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013;19(6):739–46.

    Article  CAS  PubMed  Google Scholar 

  62. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  63. Chen J, Chen Z. The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol. 2014;31(8):82.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6(12):1245–52.

    Article  CAS  PubMed  Google Scholar 

  65. Denoeud J, Moser M. Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol. 2011;89(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  66. Jacobs J, Deschoolmeester V, Zwaenepoel K, Rolfo C, Silence K, Rottey S, et al. CD70: an emerging target in cancer immunotherapy. Pharmacol Ther. 2015;155:1–10.

    Article  CAS  PubMed  Google Scholar 

  67. Claus C, Riether C, Schürch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res. 2012;72(14):3664–76.

    Article  CAS  PubMed  Google Scholar 

  68. Jacobs J, Zwaenepoel K, Rolfo C, Van den BJ, Deben C, Silence K, et al. Unlocking the potential of CD70 as a novel immunotherapeutic target for non-small cell lung cancer. Oncotarget. 2015;6:13462–75.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Thomas LJ, He L-Z, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology. 2014;3(1):e27255.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schaer DA, Hirschhorn-Cymerman D, Wolchok JD, Hodi F, O’Day S, McDermott D, et al. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. J Immunother Cancer. 2014;2(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pedroza-Gonzalez A, Verhoef C, Ijzermans JNM, Peppelenbosch MP, Kwekkeboom J, Verheij J, et al. Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology. 2013;57(1):183–94.

    Article  CAS  PubMed  Google Scholar 

  72. Schaer DA, Budhu S, Liu C, Bryson C, Malandro N, Cohen A, et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T-cell lineage stability. Cancer Immunol Res. 2013;1(5):320–31.

    Article  CAS  PubMed  Google Scholar 

  73. Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD. Science gone translational: the OX40 agonist story. Immunol Rev. 2011;244(1):218–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S, et al. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol. 2004;172(6):3580–9.

    Article  CAS  PubMed  Google Scholar 

  75. Cepowicz D, Zaręba K, Gryko M, Stasiak-Bermuta A, Kędra B. Determination of the activity of CD134 (OX-40) and CD137 (4-1BB) adhesive nolecules by means of flow cytometry in patients with colorectal cancer metastases to the liver. Polish J Surg. 2011;83(8):424–9.

    Article  Google Scholar 

  76. Redmond WL, Triplett T, Floyd K, Weinberg AD, Watts T, Croft M, et al. Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression. PLoS One. 2012;7(4):e34467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weinberg AD, Rivera M-M, Prell R, Morris A, Ramstad T, Vetto JT, et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol. 2000;164(4):2160–9.

    Article  CAS  PubMed  Google Scholar 

  78. Gough MJ, Crittenden MR, Sarff M, Pang P, Seung SK, Vetto JT, et al. Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother. 2010;33(8):798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pan P-Y, Zang Y, Weber K, Meseck ML, Chen S-H. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther. 2002;6(4):528–36.

    Article  CAS  PubMed  Google Scholar 

  80. Houot R, Levy R. T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood. 2009;113(15):3546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Watanabe A, Hara M, Chosa E, Nakamura K, Sekiya R, Shimizu T, et al. Combination of adoptive cell transfer and antibody injection can eradicate established tumors in mice–an in vivo study using anti-OX40mAb, anti-CD25mAb and anti-CTLA4mAb-. Immunopharmacol Immunotoxicol. 2010;32(2):238–45.

    Article  CAS  Google Scholar 

  82. Garrison K, Hahn T, Lee W-C, Ling LE, Weinberg AD, Akporiaye ET. The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol Immunother. 2012;61(4):511–21.

    Article  CAS  PubMed  Google Scholar 

  83. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013;73(24):7189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997;186(1):47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vinay DS, Kwon BS. 4-1BB signaling beyond T cells. Cell Mol Immunol. 2011;8(4):281–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vinay DS, Kwon BS. Immunotherapy of cancer with 4-1BB. Mol Cancer Ther. 2012;11(5):1062–70.

    Article  CAS  PubMed  Google Scholar 

  87. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellström KE, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3(6):682–5.

    Article  CAS  PubMed  Google Scholar 

  88. Sabel MS, Conway TF, Chen FA, Bankert RB. Monoclonal antibodies directed against the T-cell activation molecule CD137 (interleukin-A or 4-1BB) block human lymphocyte-mediated suppression of tumor xenografts in severe combined immunodeficient mice. J Immunother. 2000;23(3):362–8.

    Article  CAS  PubMed  Google Scholar 

  89. Cepowicz D, Gryko M, Zaręba K, Stasiak-Bermuta A, Kędra B. Assessment of activity of an adhesion molecule CD134 and CD137 in colorectal cancer patients. Polish J Surg. 2011;83(12):641–5.

    Article  Google Scholar 

  90. Dimberg J, Hugander A, Wågsäter D. Expression of CD137 and CD137 ligand in colorectal cancer patients. Oncol Rep. 2006;15(5):1197–200.

    CAS  PubMed  Google Scholar 

  91. Chen S. Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther. 2000;2(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  92. Segal NH, Gopal AK, Shailender B, Kohrt HE, Levy R, Pishvain MJ, et al. A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. J Clin Oncol. 2014;32:5s.. (suppl; abstr 3007)

    Google Scholar 

  93. Kohrt HE, Colevas AD, Houot R, Weiskopf K, Goldstein MJ, Lund P, et al. Targeting CD137 enhances the efficacy of cetuximab. J Clin Invest. 2014;124(6):2668–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Houot R, Kohrt H. CD137 stimulation enhances the vaccinal effect of anti-tumor antibodies. Oncoimmunology. 2014;3(7):e941740.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72.

    Article  CAS  PubMed  Google Scholar 

  96. Barth RJ, Fisher DA, Wallace PK, Channon JY, Noelle RJ, Gui J, et al. A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clin Cancer Res. 2010;16(22):5548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Honeychurch J, Cheadle EJ, Dovedi SJ, Illidge TM. Immuno-regulatory antibodies for the treatment of cancer. Expert Opin Biol Ther. 2015;15(6):787–801.

    Article  CAS  PubMed  Google Scholar 

  98. Georgopoulos NT, Merrick A, Scott N, Selby PJ, Melcher A, Trejdosiewicz LK. CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing. Int J Cancer. 2007;121(6):1373–81.

    Article  CAS  PubMed  Google Scholar 

  99. Palmer DH, Hussain SA, Ganesan R, Cooke PW, Wallace DMA, Young LS, et al. CD40 expression in prostate cancer: a potential diagnostic and therapeutic molecule. Oncol Rep. 2004;12(4):679–82.

    CAS  PubMed  Google Scholar 

  100. Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19(5):1035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lal N, Beggs AD, Willcox BE, Middleton GW. An immunogenomic stratification of colorectal cancer: implications for development of targeted immunotherapy. Oncoimmunology. 2015;4(3):e976052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mlecnik B, Bindea G, Angell HK, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016;44(3):698–711.

    Article  CAS  PubMed  Google Scholar 

  103. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med. 2012;10:205.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Deschoolmeester V, Smits E, Peeters M, Vermorken JB. Status of active specific immunotherapy for stage II, stage III, and resected stage IV colon cancer. Curr Colorectal Cancer Rep. 2013;9(4):380–90.

    Article  Google Scholar 

  105. Ilieva KM, Correa I, Josephs DH, Karagiannis P, Egbuniwe IU, Cafferkey MJ, et al. Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma. Mol Cancer Ther. 2014;13(12):2769–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fields AL, Keller A, Schwartzberg L, Bernard S, Kardinal C, Cohen A, Schulz J, Eisenberg P, Forster J, Wissel P. Adjuvant therapy with the monoclonal antibody Edrecolomab plus fluorouracil-based therapy does not improve overall survival of patients with stage III colon cancer. J Clin Oncol. 2009;27(12):1941–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús García-Foncillas López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Callata-Carhuapoma, H.R., García-Foncillas López, J. (2019). Immunological Treatment in Gastrointestinal Cancers. In: Yalcin, S., Philip, P. (eds) Textbook of Gastrointestinal Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-18890-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18890-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18888-7

  • Online ISBN: 978-3-030-18890-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics