Skip to main content

On Friction-Stir Welding of 3D Printed Thermoplastics

  • Chapter
  • First Online:
Materials Forming, Machining and Post Processing

Abstract

The use of thermoplastic materials, specifically in automotive industry, is increasing exponentially due to their numerous overpowering quality characteristics in comparison of metals and alloys. Three-dimensional (3D) printing technologies are established as one of the best methods for fabricating customized, complex, durable and mechanically strong structures. However, such parts often required to be assembled when subjected to industrial applications, automotive sector for instance. The service life of the joints made with adhesives, glues and mechanical fasteners is greatly depending on working conditions, for e.g.: moisture. Recently, researchers have highlighted the utility of friction stir welding (FSW) of thermoplastics for a wide range of conventionally made thermoplastics structures and very less information is available on FSW of three-dimensional (3D) prints. This chapter outlines the recent research trends in FSW and a specified case study focusing optimization of tensile strength of the specimens, made with 3D printing , by friction stir welding (FSW). Further, as-welded and fractured specimens were analyzed through scanning electron microscopy to identify the joint quality and reasons of failure. It has been found that the chips formation of thermoplastic fibers while welding was the most critical issue, opening new research areas for forthcoming 3D printing and FSW practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cam G, Mistikoglu S (2014) Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform 23(6):1936–1953

    Article  CAS  Google Scholar 

  2. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) Friction stir welding, International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8

    Google Scholar 

  3. Westermann I, Hopperstad OS, Marthinsen K, Holmedal B (2009) Ageing and work-hardening behaviour of a commercial AA7108 aluminium alloy. Mater Sci Eng, A 524(1):151–157

    Article  CAS  Google Scholar 

  4. Deschamps A, Niewczas M, Bley F, Brechet Y, Embury JD, Sinq LL, Livet F, Simon JP (1999) Low-temperature dynamic precipitation in a supersaturated AI-Zn-Mg alloy and related strain hardening. Philos Mag A 79(10):2485–2504

    Article  CAS  Google Scholar 

  5. Kuijpers NC, Kool WH, van der Zwaag S (2002) DSC study on Mg-Si phases in as cast AA6xxx. InMat Sci Forum 396:675–680

    Article  Google Scholar 

  6. Simar A, Bréchet Y, De Meester B, Denquin A, Gallais C, Pardoen T (2012) Integrated modeling of friction stir welding of 6xxx series Al alloys: process, microstructure and properties. Progr Mat Sci 31;57(1):95–183

    Article  CAS  Google Scholar 

  7. Neto DM, Neto P (2013) Numerical modeling of friction stir welding process: a literature review. Int J Adv Manuf Technol 1:1–2

    Google Scholar 

  8. Hamilton C, Dymek S, Sommers A (2008) A thermal model of friction stir welding in aluminum alloys. Int J Mach Tools Manuf 48(10):1120–1130

    Article  Google Scholar 

  9. Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Strauss AM (2014) Friction stir welding: process, automation, and control. J Manuf Process 16(1):56–73

    Article  Google Scholar 

  10. Feng Z, Santella ML, David SA, Steel RJ, Packer SM, Pan T, Kuo M, Bhatnagar RS (2005) Friction stir spot welding of advanced high-strength steels-a feasibility study. SAE Technical Paper

    Google Scholar 

  11. Nandan R, DebRoy T, Bhadeshia HK (2008) Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci 53(6):980–1023

    Article  CAS  Google Scholar 

  12. Figner G, Vallant R, Weinberger T, Schrottner H, Pasic H, Enzinger N (2009) Friction stir spot welds between aluminium and steel automotive sheets: influence of welding parameters on mechanical properties and microstructure. Weld World 53(1–2):R13–R23

    Article  CAS  Google Scholar 

  13. Schmidt H, Hattel J, Wert J (2003) An analytical model for the heat generation in friction stir welding. Modell Simul Mater Sci Eng 12(1):143

    Article  Google Scholar 

  14. Threadgill PL (2007) Terminology in friction stir welding. Sci Technol Weld Joining 12(4):357–360

    Article  Google Scholar 

  15. Fazel-Najafabadi M, Kashani-Bozorg SF, Zarei-Hanzaki A (2011) Dissimilar lap joining of 304 stainless steel to CP-Ti employing friction stir welding. Mater Des 32(4):1824–1832

    Article  CAS  Google Scholar 

  16. Simoncini M, Forcellese A (2012) Effect of the welding parameters and tool configuration on micro-and macro-mechanical properties of similar and dissimilar FSWed joints in AA5754 and AZ31 thin sheets. Mater Des 41:50–60

    Article  CAS  Google Scholar 

  17. Bang H, Bang H, Jeon G, Oh I, Ro C (2012) Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Mater Des 37:48–55

    Article  CAS  Google Scholar 

  18. Feng J, Songbai X, Wei D (2012) Reliability studies of Cu/Al joints brazed with Zn–Al–Ce filler metals. Mat Des 42:156–163

    Article  CAS  Google Scholar 

  19. Honarpisheh M, Asemabadi M, Sedighi M (2012) Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer. Mater Des 37:122–127

    Article  CAS  Google Scholar 

  20. Sedighi M, Honarpisheh M (2012) Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer. Mater Des 37:577–581

    Article  CAS  Google Scholar 

  21. Tan CW, Jiang ZG, Li LQ, Chen YB, Chen XY (2013) Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Mater Des 51:466–473

    Article  CAS  Google Scholar 

  22. Liu X, Lan S, Ni J (2014) Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater Des 59:50–62

    Article  CAS  Google Scholar 

  23. Mofid MA, Abdollah-Zadeh A, Ghaini FM (2012) The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Mater Des 36:161–167

    Article  CAS  Google Scholar 

  24. Sun YF, Fujii H, Takaki N, Okitsu Y (2013) Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater Des 47:350–357

    Article  CAS  Google Scholar 

  25. Bilici MK, Yükler Aİ, Kurtulmuş M (2011) The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mat Des 32(7):4074–4079

    Article  CAS  Google Scholar 

  26. Bilici MK, Yukler AI (2012) Effects of welding parameters on friction stir spot welding of high density polyethylene sheets. Mater Des 33:545–550

    Article  CAS  Google Scholar 

  27. Bilici MK, Yükler AI (2012) Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Mat Des 33:145–152

    Article  CAS  Google Scholar 

  28. Gao J, Li C, Shilpakar U, Shen Y (2015) Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process. Mater Des 86:289–296

    Article  CAS  Google Scholar 

  29. Azarsa E, Mostafapour A (2014) Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J Manuf Process 16(1):149–155

    Article  Google Scholar 

  30. Ratanathavorn W (2012) Hybrid joining of aluminum to thermoplastics with friction stir welding (www.diva-portal.org)

  31. Mendes N, Loureiro A, Martins C, Neto P, Pires JN (2014) Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Mater Des 64:81–90

    Article  CAS  Google Scholar 

  32. Mendes N, Loureiro A, Martins C, Neto P, Pires JN (2014) Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater Des 58:457–464

    Article  CAS  Google Scholar 

  33. Bagheri A, Azdast T, Doniavi A (2013) An experimental study on mechanical properties of friction stir welded ABS sheets. Mater Des 43:402–409

    Article  CAS  Google Scholar 

  34. Paoletti A, Lambiase F, Di Ilio A (2015) Optimization of friction stir welding of thermoplastics. Procedia CIRP 33:562–567

    Article  Google Scholar 

  35. Bozkurt Y (2012) The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater Des 35:440–445

    Article  CAS  Google Scholar 

  36. Wirth FX, Zaeh MF, Krutzlinger M, Silvanus J (2014) Analysis of the bonding behavior and joining mechanism during friction press joining of aluminum alloys with thermoplastics. Procedia CIRP 18:215–220

    Article  Google Scholar 

  37. Liu FC, Liao J, Nakata K (2014) Joining of metal to plastic using friction lap welding. Mater Des 54:236–244

    Article  CAS  Google Scholar 

  38. Khodabakhshi F, Haghshenas M, Sahraeinejad S, Chen J, Shalchi B, Li J, Gerlich AP (2014) Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Mater Charact 98:73–82

    Article  CAS  Google Scholar 

  39. Amancio-Filho ST, Bueno C, Dos Santos JF, Huber N, Hage E (2011) On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater Sci Eng, A 528(10):3841–3848

    Article  CAS  Google Scholar 

  40. Ratanathavorn W, Melander A (2015) Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci Technol Weld Joining 20(3):222–228

    Article  CAS  Google Scholar 

  41. White D (2002) Object consolidation employing friction joining, US patent, Patent No.: US 6,457,629 B1

    Google Scholar 

  42. Lequeu PH, Muzzolini R, Ehrstrom JC, Bron F, Maziarz R (2006) Powerpoint presentation on: high performance friction stir welded structures using advanced alloys. In: Aeromat conference, Seattle, WA

    Google Scholar 

  43. Baumann JA (2012) Technical report on: production of energy efficient preform structures. The Boeing Company, Huntington Beach, CA

    Book  Google Scholar 

  44. Sharma A, Bandari V, Ito K, Kohama K, Ramji M, BV HS (2017) A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing. J Manuf Process 26:122–130

    Article  Google Scholar 

  45. Guan Q (2013) Generalized additive manufacturing based on welding/joining technologies. Aвтoмaтичecкaя cвapкa 10–11:33–37

    Google Scholar 

  46. Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des 65:934–952

    Article  CAS  Google Scholar 

  47. Rodrigues DM, Loureiro A, Leitao C, Leal RM, Chaparro BM, Vilaça P (2009) Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater Des 30(6):1913–1921

    Article  CAS  Google Scholar 

  48. Bilici MK (2012) Effect of tool geometry on friction stir spot welding of polypropylene sheets. Express Polymer Letters 6(10)

    Article  CAS  Google Scholar 

  49. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mat Sci Eng R: Rep 50:1–78

    Article  CAS  Google Scholar 

  50. Su P, Gerlich A, North TH (2005) Friction stir spot welding of aluminum and magnesium alloy sheets. SAE Technical Paper

    Google Scholar 

  51. Kulekci MK, Şik A, Kaluç E (2008) Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. Int J Adv Manuf Technol 36(9–10):877–882

    Article  Google Scholar 

  52. Hirasawa S, Badarinarayan H, Okamoto K, Tomimura T, Kawanami T (2010) Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J Mater Process Technol 210(11):1455–1463

    Article  CAS  Google Scholar 

  53. Chowdhury SM, Chen DL, Bhole SD, Cao X (2010) Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints. Procedia Eng 2(1):825–833

    Article  CAS  Google Scholar 

  54. Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int J Mach Tools Manuf 47(15):2230–2236

    Article  Google Scholar 

  55. Vijay SJ, Murugan N (2010) Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10wt.% TiB 2 metal matrix composite. Mat Des 31(7):3585–3589

    Google Scholar 

  56. Yang Q, Mironov S, Sato YS, Okamoto K (2010) Material flow during friction stir spot welding. Mater Sci Eng, A 527(16):4389–4398

    Article  CAS  Google Scholar 

  57. Pirizadeh M, Azdast T, Ahmadi SR, Shishavan SM, Bagheri A (2014) Friction stir welding of thermoplastics using a newly designed tool. Mater Des 54:342–347

    Article  CAS  Google Scholar 

  58. Eslami S, Ramos T, Tavares PJ, Moreira PM (2015) Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers. Procedia Eng 114:199–207

    Article  CAS  Google Scholar 

  59. Sadeghian N, Givi MK (2015) Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets. Mater Des 67:145–53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunpreet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Prakash, C., Gupta, M.K. (2020). On Friction-Stir Welding of 3D Printed Thermoplastics. In: Gupta, K. (eds) Materials Forming, Machining and Post Processing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-18854-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18854-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18853-5

  • Online ISBN: 978-3-030-18854-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics