Skip to main content

Non-melanoma Skin Cancer and Cutaneous Melanoma from Dermatological Point of View

  • Chapter
  • First Online:
Non-Melanoma Skin Cancer and Cutaneous Melanoma

Abstract

Actinic keratosis (AK) is a keratinocytic lesion arising on chronically sun-exposed areas of predisposed individuals. During the last years, these lesions tend to be considered as a part of the spectrum of keratinocytic dysphasia ending to invasive cutaneous squamous cell carcinoma (SCC) [1]. Risk factors include older age, male gender, fair skin and freckles, blond or red hair, light-colored eyes, cumulative ultraviolet (UV) radiation exposure, immunosuppression, prior history of AK or other skin cancers, and genetic syndromes, such as xeroderma pigmentosum, Bloom syndrome, and Rothmund-Thomson syndrome [2] (Fig. 6.13). Although not all AKs will be transformed to invasive SCC and some may even regress spontaneously, it is estimated that approximately 10% of AKs in immunocompetent and 40% in immunosuppressed individuals will eventually progress to invasive SCC [3, 4] (Figs. 1.1 and 6.10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin GM. Impact of interval and combination therapies on the management of actinic keratosis: review and clinical considerations. J Dermatolog Treat. 2011;22:288–97.

    CAS  PubMed  Google Scholar 

  2. Schwartz RA, Bridges TM, Butani AK, et al. Actinic keratosis: an occupational and environmental disorder. J Eur Acad Dermatol Venereol. 2008;22:606–15.

    CAS  PubMed  Google Scholar 

  3. Glogau RG. The risk of progression to invasive disease. J Am Acad Dermatol. 2000;42:23–4.

    CAS  PubMed  Google Scholar 

  4. Ulrich C, Christophers E, Sterry W, et al. Skin diseases in organ transplant patients. Hautarzt. 2002;53:524–33.

    CAS  PubMed  Google Scholar 

  5. Abreu MA, Silva OM, Neto Pimentel DR, et al. Actinic cheilitis adjacent to squamous carcinoma of the lips as an indicator of prognosis. Braz J Otorhinolaryngol. 2006;72:767–71.

    PubMed  Google Scholar 

  6. Brantsch KD, Meisner C, Schonfisch B, et al. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol. 2008;9:713–20.

    PubMed  Google Scholar 

  7. Saurat JH, Lachapelle JM, Lipsker D. Dermatologie et affections sexuellement transmissibles. 5th ed. France: Masson; 2009. p. 636–57.

    Google Scholar 

  8. Wolff K, Goldsmith L, Katz S, et al. Fitzpatrick’s dermatology in internal medicine. 7th ed. New York, NY: Mc Graw Hill; 1971. p. 1007–53, 1068-198.

    Google Scholar 

  9. Breuninger H, Eigentler T, Bootz F, et al. Brief S2k guidelines-cutaneous squamous cell carcinoma. J Dtsch Dermatol Ges. 2013;11:37–45.

    PubMed  Google Scholar 

  10. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumors (Uicc International Union Against Cancer) (ed 7). Hoboken, NJ: John Wiley & Sons; 2009.

    Google Scholar 

  11. Amin MB, Edge S, Greene F, et al. eds. AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer; 2017.

    Google Scholar 

  12. Hauschild A, Breuninger H, Kaufmann R, et al. Short German guidelines: basal cell carcinoma. J Dtsch Dermatol Ges. 2008;6:2–4.

    Google Scholar 

  13. Telfer NR, Colver GB, Morton CA. Guidelines for the management of basal cell carcinoma. Br J Dermatol. 2008;159:35–48.

    CAS  PubMed  Google Scholar 

  14. NCCN Clinical practical guidelines in oncology. Basal cell and squamous cell skin cancers. Version 2. 2012.

    Google Scholar 

  15. Agelli M, Clegg LX, Becker JC, et al. The etiology and epidemiology of Merkel cell carcinoma. Curr Probl Cancer. 2010;34:14–37.

    PubMed  Google Scholar 

  16. Kuwamoto S. Recent advances in the biology of Merkel cell carcinoma. Hum Pathol. 2011;42:1063–77.

    CAS  PubMed  Google Scholar 

  17. Reichgelt BA, Visser O. Epidemiology and survival of Merkel cell carcinoma in the Netherlands. A population-based study of 808 cases in 1993–2007. Eur J Cancer. 2011;47:579–85.

    CAS  PubMed  Google Scholar 

  18. Fields RC, Busam KJ, Chou JF, et al. Five hundred patients with Merkel cell carcinoma evaluated at a single institution. Ann Surg. 2011a;254:465–73; discussion 473–65.

    PubMed  Google Scholar 

  19. Girschik J, Thorn K, Beer TW, et al. Merkel cell carcinoma in Western Australia: a population- based study of incidence and survival. Br J Dermatol. 2011;165:1051–7.

    CAS  PubMed  Google Scholar 

  20. Rao NG. Review of the role of radiation therapy in the management of Merkel cell carcinoma. Curr Probl Cancer. 2010;34:108–17.

    PubMed  Google Scholar 

  21. Ghadjar P, Kaanders JH, Poortmans P, et al. The essential role of radiotherapy in the treatment of Merkel cell carcinoma: a study from the Rare Cancer Network. Int J Radiat Oncol Biol Phys. 2011;81(4):e583–91.

    PubMed  Google Scholar 

  22. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–6.

    CAS  Google Scholar 

  23. Criscione VD, Weinstock MA. Melanoma thickness trends in the United States, 1988–2006. J Invest Dermatol. 2010;130(3):793–7.

    CAS  PubMed  Google Scholar 

  24. Erdei E, Torres SM. A new understanding in the epidemiology of melanoma. Expert Rev Anticancer Ther. 2010;10(11):1811–23.

    PubMed  PubMed Central  Google Scholar 

  25. Ries LAG, Melbert D, Krapcho M, et al. SEER cancer statistics review, 1975–2005. Bethesda, MD: National Cancer Institute; 2008. Ref Type:Generic.

    Google Scholar 

  26. Tucker MA. Melanoma epidemiology. Hematol Oncol Clin North Am. 2009;23(3):383–95.

    PubMed  PubMed Central  Google Scholar 

  27. Jemal A, Devesa SS, Hartge P, Tucker MA. Recent trends in melanoma incidence among whites in the United States. J Natl Cancer Inst. 2001;93:678–83.

    CAS  PubMed  Google Scholar 

  28. Anderson WF, Pfeiffer RM, Tucker MA, Rosenberg PS. Divergent cancer pathways for early-onset and late-onset cutaneous malignant melanoma. Cancer. 2009;115(18):4176–85.

    PubMed  Google Scholar 

  29. Whiteman DC, Pavan WJ, Bastian BC. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res. 2011;24(5):879–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lachiewicz AM, Berwick M, Wiggins CL, Thomas NE. Epidemiologic support for melanoma heterogeneity using the surveillance, epidemiology, and end results program. J Invest Dermatol. 2008;128(5):1340–2.

    CAS  PubMed  Google Scholar 

  31. Lipsker D, Engel F, Cribier B, et al. Trends in melanoma epidemiology suggest three different types of melanoma. Br J Dermatol. 2007;157:338–43.

    CAS  PubMed  Google Scholar 

  32. Adegbidi H, Yedomon H, Atadokpede F, et al. Skin cancers at the National University Hospital of Cotonou from 1985 to 2004. Int J Dermatol. 2007;46(Suppl 1):26–9.

    PubMed  Google Scholar 

  33. Asuquo ME, Ebughe G. Cutaneous cancers in Calabar, Southern Nigeria. Dermatol Online J. 2009;15(4):11.

    PubMed  Google Scholar 

  34. Valverde P, Healy E, Jackson I, et al. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet. 1995;11(3):328–30.

    CAS  PubMed  Google Scholar 

  35. Raimondi S, Sera F, Gandini S, et al. MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int J Cancer. 2008;122(12):2753–60.

    CAS  PubMed  Google Scholar 

  36. Law MH, Macgregor S, Hayward NK. Melanoma genetics: recent findings take us beyond well-traveled pathways. J Invest Dermatol. 2012;132(7):1763–74.

    CAS  PubMed  Google Scholar 

  37. Jenkins NC, Liu T, Cassidy P, et al. The p16 (INK4A) tumor suppressor regulates cellular oxidative stress. Oncogene. 2011;30(3):265–74.

    CAS  PubMed  Google Scholar 

  38. Goldstein AM, Chan M, Harland M, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44(2):99–106.

    CAS  PubMed  Google Scholar 

  39. Puig S, Malvehy J, Badenas C, et al. Role of the CDKN2A locus in patients with multiple primary melanomas. J Clin Oncol. 2005;23(13):3043–51.

    CAS  PubMed  Google Scholar 

  40. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    CAS  PubMed  Google Scholar 

  41. Menzies AM, Haydu LE, Visintin L, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18(12):3242–9.

    CAS  PubMed  Google Scholar 

  42. Aguissa-Touré AH, Li G. Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci. 2012;69(9):1475–91.

    PubMed  Google Scholar 

  43. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.

    CAS  PubMed  Google Scholar 

  44. Mayo LD, Donner DB. The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci. 2002;27(9):462–7.

    CAS  PubMed  Google Scholar 

  45. Whiteman DC, Watt P, Purdie DM, et al. Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J Natl Cancer Inst. 2003;95:806–12.

    PubMed  Google Scholar 

  46. Hocker T, Tsao H. Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum Mutat. 2007;28(6):578–88.

    CAS  PubMed  Google Scholar 

  47. Sauter ER, Yeo UC, von Stemm A, et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 2002;62:3200–6.

    CAS  PubMed  Google Scholar 

  48. Olsen CM, Carroll HJ, Whiteman DC. Estimating the attributable fraction for melanoma: a meta-analysis of pigmentary characteristics and freckling. Int J Cancer. 2010a;127(10):2430–45.

    CAS  PubMed  Google Scholar 

  49. Tsao H, Bevona C, Goggins W, Quinn T. The transformation rate of moles (melanocytic nevi) into cutaneous melanoma: a population-based estimate. Arch Dermatol. 2003;139:282–8.

    PubMed  Google Scholar 

  50. Gandini S, Sera F, Cattaruzza MS, et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer. 2005;41:28–44.

    PubMed  Google Scholar 

  51. Tucker MA, Halpern A, Holly EA, et al. Clinically recognized dysplastic nevi. A central risk factor for cutaneous melanoma. JAMA. 1997;277:1439–44.

    CAS  PubMed  Google Scholar 

  52. Titus-Ernstoff L, Perry AE, Spencer SK, et al. Multiple primary melanoma: two-year results from a population-based study. Arch Dermatol. 2006;142:433–8.

    PubMed  Google Scholar 

  53. Ferrone CR, Ben Porat L, Panageas KS, et al. Clinicopathological features of and risk factors for multiple primary melanomas. JAMA. 2005;294:1647–54.

    CAS  PubMed  Google Scholar 

  54. Tucker MA, Fraser MC, Goldstein AM, et al. Risk of melanoma and other cancers in melanoma-prone families. J Invest Dermatol. 1993;100:350S–5S.

    CAS  PubMed  Google Scholar 

  55. Watt AJ, Kotsis SV, Chung KC. Risk of melanoma arising in large congenital melanocytic nevi: a systematic review. Plast Reconstr Surg. 2004;113:1968–74.

    PubMed  Google Scholar 

  56. Krengel S, Hauschild A, Schafer T. Melanoma risk in congenital melanocytic naevi: a systematic review. Br J Dermatol. 2006;155:1–8.

    CAS  PubMed  Google Scholar 

  57. Kinsler VA, Birley J, Atherton DJ. Great Ormond Street Hospital for children registry for congenital melanocytic naevi: prospective study 1988-2007. Part 1-epidemiology, phenotype and outcomes. Br J Dermatol. 2009;160:143–50.

    CAS  PubMed  Google Scholar 

  58. Olsen CM, Carroll HJ, Whiteman DC. Familial melanoma: a meta-analysis and estimates of attributable fraction. Cancer Epidemiol Biomark Prev. 2010b;19(1):65–73.

    Google Scholar 

  59. Garibyan L, Fisher DE. How sunlight causes melanoma. Curr Oncol Rep. 2010;12:319–26.

    CAS  PubMed  Google Scholar 

  60. Dennis LK, Vanbeek MJ, Beane Freeman LE, et al. Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol. 2008;18(8):614–27.

    PubMed  PubMed Central  Google Scholar 

  61. Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ. 2012;345:e4757.

    PubMed  PubMed Central  Google Scholar 

  62. Weinstock MA, Sober AJ. The risk of progression of lentigo maligna to lentigo maligna melanoma. Br J Dermatol. 1987;116(3):303–10.

    CAS  PubMed  Google Scholar 

  63. Cress RD, Holly EA. Incidence of cutaneous melanoma among Non-Hispanic whites, Hispanics, Asians, and blacks: an analysis of California cancer registry data, 1988–93. Cancer Causes Control. 1997;8(2):246–52.

    CAS  PubMed  Google Scholar 

  64. Saenz NC, Saenz-Badillos J, Busam K, et al. Childhood melanoma survival. Cancer. 1999;85(3):750–4.

    CAS  PubMed  Google Scholar 

  65. Mills O, Messina JL. Pediatric melanoma: a review. Cancer Control. 2009;16(3):225–33.

    PubMed  Google Scholar 

  66. Pentheroudakis G, Orecchia R, Hoekstra HJ, Pavlidis N, ESMO Guidelines Working Group. Cancer, fertility and pregnancy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v266–73.

    PubMed  Google Scholar 

  67. Andtbacka RH, Donaldson MR, Bowles TL, et al. Sentinel lymph node biopsy for melanoma in pregnant women. Ann Surg Oncol. 2013;20:689–96.

    PubMed  Google Scholar 

  68. Peccatori FA, Azim HA Jr, Orecchia R, ESMO Guidelines Working Group, et al. Cancer, pregnancy and fertility: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24(Suppl 6):vi160–70.

    PubMed  Google Scholar 

  69. Scolyer G, et al. Melanoma. In: Amin MB, Edge SB, Greene FL, et al. editors. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017.

    Google Scholar 

  70. Garbe C, Peris K, Hauschild A, European Dermatology Forum; European Association of Dermato-Oncology; European Organization of Research and Treatment of Cancer, et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline-update 2012. Eur J Cancer. 2012;48(15):2375–90.

    PubMed  Google Scholar 

  71. Pehamberger H, Binder M, Steiner A, Wolff K. In vivo epiluminescence microscopy: improvement of early diagnosis of melanoma. J Invest Dermatol. 1993;100(3):356S–62S.

    CAS  PubMed  Google Scholar 

  72. Carli P, De Giorgi V, Soyer HP, et al. Dermatoscopy in the diagnosis of pigmented skin lesions: a new semiology for the dermatologist. J Eur Acad Dermatol Venereol. 2000;14(5):353–69.

    CAS  PubMed  Google Scholar 

  73. Kittler H, Pehamberger H, Wolff K, Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002;3(3):159–65.

    CAS  PubMed  Google Scholar 

  74. Wang SQ, Hashemi P. Noninvasive imaging technologies in the diagnosis of melanoma. Semin Cutan Med Surg. 2010;29:174–84.

    PubMed  Google Scholar 

  75. Dolianitis C, Kelly J, Wolfe R, Simpson P. Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Arch Dermatol. 2005;141:1008–14.

    PubMed  Google Scholar 

  76. Salerni G, Carrera C, Lovatto L, et al. Benefits of total body photography and digital dermatoscopy (“two-step method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma. J Am Acad Dermatol. 2012;67(1):e17–27.

    PubMed  Google Scholar 

  77. Ordóñez NG. Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. Hum Pathol. 2014;45(2):191–205.

    PubMed  Google Scholar 

  78. Xu X, Chu AY, Pasha TL, et al. Immunoprofile of MITF, tyrosinase, melan-A, and MAGE-1 in HMB45-negative melanomas. Am J Surg Pathol. 2002;26(1):82–7.

    PubMed  Google Scholar 

  79. Smalley KS, Weber JS. Up close and personal: the challenges of precision medicine in melanoma. J Natl Cancer Inst. 2014;106(2):djt443.

    PubMed  Google Scholar 

  80. Trotter SC, Sroa N, Winkelmann RR, et al. A global review of melanoma follow-up guidelines. J Clin Aesthet Dermatol. 2013;6(9):18–26.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostaki, M., Antoniou, C., Stefanaki, I., Stratigos, A. (2020). Non-melanoma Skin Cancer and Cutaneous Melanoma from Dermatological Point of View. In: Papadopoulos, O., Papadopulos, N.A., Champsas, G. (eds) Non-Melanoma Skin Cancer and Cutaneous Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-030-18797-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18797-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18795-8

  • Online ISBN: 978-3-030-18797-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics