Skip to main content

Leros: The Return of the Accumulator Machine

  • Conference paper
  • First Online:
Architecture of Computing Systems – ARCS 2019 (ARCS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11479))

Included in the following conference series:

Abstract

An accumulator instruction set architecture is simpler than an instruction set of a (reduced instruction set computer) RISC architecture. Therefore, an accumulator instruction set that does within one instruction less than a typical RISC instruction is probably more “reduced” than a standard load/store register based RISC architecture.

This paper presents Leros, an accumulator machine and its supporting C compiler. The hypothesis of the Leros instruction set architecture is that it can deliver the same performance as a RISC pipeline, but consumes less hardware and therefore also less power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The initial version of the processor has been designed on the island Leros: https://www.leros.gr/en/.

  2. 2.

    https://github.com/jeuneS2/oe.

  3. 3.

    https://en.wikipedia.org/wiki/Texas_Instruments_TI-99/4A.

  4. 4.

    No accumulator optimizations

  5. 5.

    No constant registers

References

  1. Altera Corporation: Nios II processor reference handbook, version NII5V1-11.0, May 2011. http://www.altera.com/literature/lit-nio2.jsp

  2. Bachrach, J., et al.: Chisel: constructing hardware in a scala embedded language. In: The 49th Annual Design Automation Conference (DAC 2012), pp. 1216–1225. ACM, San Francisco, June 2012

    Google Scholar 

  3. Danecek, J., Drapal, F., Pluhacek, A., Salcic, Z., Servit, M.: DOP-a simple processor for custom computing machines. J. Microcomput. Appl. 17(3), 239–253 (1994). https://doi.org/10.1006/jmca.1994.1015

    Article  Google Scholar 

  4. EEMBC: Coremark - an EEMBC benchmark (2018). https://www.eembc.org/coremark/. Accessed 12 Dec 2018

  5. EEMBC: Coremark benchmark score - stmicroelectronics stm32l053 (2018). https://www.eembc.org/benchmark/reports/benchreport.php?suite=CORE&bench_scores=1689. Accessed 12 Dec 2018

  6. Gaisler, J.: A portable and fault-tolerant microprocessor based on the SPARC v8 architecture. In: DSN 2002, Proceedings of the 2002 International Conference on Dependable Systems and Networks, p. 409. IEEE Computer Society, Washington, DC, USA (2002). http://doi.ieeecomputersociety.org/10.1109/DSN.2002.1028926

  7. Gwennap, L.: Esperanto makes out RISC-V. Technical report, The Linley Group, Microprocessor Report, December (2018)

    Google Scholar 

  8. Hempel, G., Hochberger, C.: A resource optimized processor core for FPGA based SoCs. In: Kubatova, H. (ed.) Proceedings of the 10th Euromicro Conference on Digital System Design (DSD 2007), pp. 51–58. IEEE (2007)

    Google Scholar 

  9. Hennessy, J.L.: VLSI processor architecture. IEEE Trans. Comput. C–33(12), 1221–1246 (1984). https://doi.org/10.1109/TC.1984.1676395

    Article  Google Scholar 

  10. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program analysis & transformation. In: International Symposium on Code Generation and Optimization (CGO 2004), pp. 75–88. IEEE Computer Society (2004)

    Google Scholar 

  11. Nakatsuka, H., Tanaka, Y., Chu, T.V., Takamaeda-Yamazaki, S., Kise, K.: Ultrasmall: the smallest MIPS soft processor. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–4, September 2014. https://doi.org/10.1109/FPL.2014.6927387

  12. Patterson, D.A.: Reduced instruction set computers. Commun. ACM 28(1), 8–21 (1985). https://doi.org/10.1145/2465.214917

    Article  MathSciNet  Google Scholar 

  13. Patterson, D.A., Sequin, C.H.: RISC I: a reduced instruction set VLSI computer. In: Proceedings of the 8th Annual Symposium on Computer Architecture, ISCA 1981, pp. 443–457. IEEE Computer Society Press, Los Alamitos (1981)

    Google Scholar 

  14. Petersen, M.B.: A compiler backend and toolchain for the leros architecture. B.Sc. Engineering thesis, Technical University of Denmark (2019)

    Google Scholar 

  15. Robinson, J., Vafaee, S., Scobbie, J., Ritche, M., Rose, J.: The supersmall soft processor. In: 2010 VI Southern Programmable Logic Conference (SPL), pp. 3–8, March 2010. https://doi.org/10.1109/SPL.2010.5483016

  16. Schoeberl, M.: Leros: a tiny microcontroller for FPGAs. In: Proceedings of the 21st International Conference on Field Programmable Logic and Applications (FPL 2011), pp. 10–14. IEEE Computer Society, Chania, September 2011

    Google Scholar 

  17. Schoeberl, M.: Digital Design with Chisel. TBD V 0.1 (2018). https://github.com/schoeberl/chisel-book

  18. Schoeberl, M.: Lipsi: probably the smallest processor in the world. In: Berekovic, M., Buchty, R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS, vol. 10793, pp. 18–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77610-1_2

    Chapter  Google Scholar 

  19. Waterman, A.: Design of the RISC-V instruction set architecture. Ph.D. thesis, EECS Department, University of California, Berkeley, January 2016

    Google Scholar 

  20. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commun. ACM (1984). https://doi.org/10.1145/358274.358283

    Article  Google Scholar 

  21. Xilinx: PicoBlaze 8-bit embedded microcontroller user guide (2010)

    Google Scholar 

  22. Xilinx Inc.: MicroBlaze processor reference guide, version 9.0 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schoeberl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schoeberl, M., Petersen, M.B. (2019). Leros: The Return of the Accumulator Machine. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds) Architecture of Computing Systems – ARCS 2019. ARCS 2019. Lecture Notes in Computer Science(), vol 11479. Springer, Cham. https://doi.org/10.1007/978-3-030-18656-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18656-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18655-5

  • Online ISBN: 978-3-030-18656-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics