Skip to main content

Tumor Sequencing: Enabling Personalized Targeted Treatments with Informatics

  • Chapter
  • First Online:
Personalized and Precision Medicine Informatics

Part of the book series: Health Informatics ((HI))

  • 854 Accesses

Abstract

In recent years Next-Generation Sequencing (NGS)_ technology has provided expensive insights about the DNA structural and functional aberrations in multiple cancer types. These developments have been used to improvise diagnosis, prognosis, treatment discovery and personalizing treatments. This chapter reviews and highlights major informatics methods and initiatives, including in the area of assembling and sharing large clinico-genomic data sets for research and clinical care support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51. http://www.nature.com/articles/nrg.2016.49.

    Article  CAS  PubMed  Google Scholar 

  2. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  3. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77. https://www.sciencedirect.com/science/article/pii/S0092867413012087?via%3Dihub.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Getz G, Gabriel SB, Cibulskis K, Lander E, Sivachenko A, Sougnez C, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73. https://doi.org/10.1038/nature12113.

    Article  CAS  Google Scholar 

  5. Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9. https://doi.org/10.1038/nature13480.

    Article  CAS  Google Scholar 

  6. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15. https://www.ncbi.nlm.nih.gov/pubmed/21720365.

    Article  Google Scholar 

  7. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90. https://www.sciencedirect.com/science/article/pii/S0092867414012380?via%3Dihub.

    Article  PubMed Central  Google Scholar 

  8. The Cancer Genome Atlas Research Network, Ley T, Miller C, Ding L, Raphael B, Mungall A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–2074. https://doi.org/10.1056/NEJMoa1301689

  9. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158:929–44. https://www.sciencedirect.com/science/article/pii/S0092867414008769?via%3Dihub.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. The Cancer Genome Atlas Research Network, Hammerman P, Lawrence M, Voet D, Jing R, Cibulskis K, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25. http://www.ncbi.nlm.nih.gov/pubmed/22960745

  11. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. http://www.ncbi.nlm.nih.gov/pubmed/20129251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. The Cancer Genome Atlas Research Network, Weinstein J, Akbani R, Broom B, Wang W, Verhaak R, et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22. http://www.nature.com/articles/nature12965.

  13. Davis CF, Ricketts CJ, Wang M, Yang L, Cherniack AD, Shen H, et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell. 2014;26:319–30. https://www.sciencedirect.com/science/article/pii/S1535610814003043?via%3Dihub.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Network TCGAR. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9. http://www.nature.com/articles/nature12222.

    Article  Google Scholar 

  15. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG Island Methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22. https://www.sciencedirect.com/science/article/pii/S153561081000108X?via%3Dihub.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8. https://doi.org/10.1038/nature07385.

    Article  CAS  Google Scholar 

  17. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet. Hoboken, NJ: Wiley; 2008. p. 10.11.1–10.11.26. https://doi.org/10.1002/0471142905.hg1011s57.

    Google Scholar 

  18. Yeang C-H, McCormick F, Levine A. Combinatorial patterns of somatic gene mutations in cancer. FASEB J. 2008;22:2605–22. https://doi.org/10.1096/fj.08-108985.

    Article  CAS  PubMed  Google Scholar 

  19. National Institutes of Health- Office of Strategic Coordination. Genotype-Tissue Expression (GTEx). 2018. https://commonfund.nih.gov/gtex.

  20. Stranger BE, Brigham LE, Hasz R, Hunter M, Johns C, Johnson M, et al. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat Genet. 2017;49:1664–70. https://doi.org/10.1038/ng.3969.

    Article  CAS  PubMed Central  Google Scholar 

  21. Stanford University. ENCODE: Encyclopedia of DNA Elements – ENCODE. 2018. https://www.encodeproject.org/.

  22. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813–23. http://www.nature.com/articles/nrc1951.

    Article  CAS  PubMed  Google Scholar 

  23. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-Gene signature as an aid to treatment decisions in early-stage breast Cancer. N Engl J Med. 2016;375:717–29. https://doi.org/10.1056/NEJMoa1602253.

    Article  CAS  PubMed  Google Scholar 

  24. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol. 2005;23:7265–77. https://doi.org/10.1200/JCO.2005.02.0818.

    Article  CAS  PubMed  Google Scholar 

  25. Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics. 2015;8:54. https://doi.org/10.1186/s12920-015-0129-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Castellanos J, Liu Q, Beauchamp R, Zhang B. Predicting colorectal cancer recurrence by utilizing multiple-view multiple-learner supervised learning. Ann Surg Oncol Soc Surg Oncol 70th Annu Cancer Symp. 2017;24:S7–8. http://www.surgonc.org/docs/default-source/pdf/sso-2017-annals-edition-of-abstracts-final.pdf?sfvrsn=2.

    Google Scholar 

  27. Myriad Genetic Laboratories Inc. Prolaris [Internet]. https://myriad.com/products-services/prostate-cancer/prolaris/.

  28. Kopetz S, Tabernero J, Rosenberg R, Jiang Z-Q, Moreno V, Bachleitner-Hofmann T, et al. Genomic classifier ColoPrint predicts recurrence in stage II colorectal cancer patients more accurately than clinical factors. Oncologist. 2015;20:127–33. http://www.ncbi.nlm.nih.gov/pubmed/25561511.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu MC, Pitcher BN, Mardis ER, Davies SR, Friedman PN, Snider JE, et al. PAM50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance). NPJ Breast Cancer. 2016;2:15023. http://www.ncbi.nlm.nih.gov/pubmed/28691057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z, Edmonson MN, et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun. 2018;9:3962. http://www.nature.com/articles/s41467-018-06485-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Illumina. FastQC [Internet]. 2018. https://www.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/fastqc.html.

  32. Mendoza-Parra MA, Saleem M-AM, Blum M, Cholley P-E, Gronemeyer H. NGS-QC generator: a quality control system for ChIP-Seq and related deep sequencing-generated datasets. New York, NY: Humana Press; 2016. p. 243–65. http://link.springer.com/10.1007/978-1-4939-3578-9_13.

    Google Scholar 

  33. Hannon GJ. FASTX-Toolkit [Internet]. 2018. http://hannonlab.cshl.edu/fastx_toolkit/index.html.

  34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Broad Institute. Picard Tools [Internet]. https://broadinstitute.github.io/picard/.

  36. Wang L, Nie J, Sicotte H, Li Y, Eckel-Passow JE, Dasari S, et al. Measure transcript integrity using RNA-seq data. BMC Bioinformatics. 2016;17:58. http://www.biomedcentral.com/1471-2105/17/58.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2015;36:btv566. https://doi.org/10.1093/bioinformatics/btv566.

    Article  CAS  Google Scholar 

  38. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8. http://www.nature.com/articles/nmeth.1226.

    Article  CAS  PubMed  Google Scholar 

  39. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5. https://doi.org/10.1007/s12064-012-0162-3.

    Article  CAS  PubMed  Google Scholar 

  40. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. https://doi.org/10.1186/gb-2010-11-3-r25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97. https://academic.oup.com/nar/article/40/10/4288/2411520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hardcastle TJ. baySeq: empirical Bayesian analysis of patterns of differential expression in count data. R package version 2.14.0. 2012.

    Google Scholar 

  44. Leng N, Kendziorski C. EBSeq: an R package for gene and isoform differential expression analysis of RNA-seq data. R package version 1.20.0. 2015.

    Google Scholar 

  45. Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29. http://www.ncbi.nlm.nih.gov/pubmed/24485249.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Conesa A, Nueda MJ. maSigPro: significant gene expression profile differences in time course gene expression data. R package version 1.52.0. 2018.

    Google Scholar 

  47. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121–32. http://www.nature.com/articles/nrg3642.

    Article  CAS  PubMed  Google Scholar 

  48. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med. 2018;24:1545–9. http://www.nature.com/articles/s41591-018-0157-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cieślik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nat Rev Genet. 2017;19:93–109. https://doi.org/10.1038/nrg.2017.96.

    Article  CAS  PubMed  Google Scholar 

  50. Schelker M, Feau S, Du J, Ranu N, Klipp E, MacBeath G, et al. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun. 2017;8:2032. http://www.nature.com/articles/s41467-017-02289-3.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allegretti M, Fabi A, Buglioni S, Martayan A, Conti L, Pescarmona E, et al. Tearing down the walls: FDA approves next generation sequencing (NGS) assays for actionable cancer genomic aberrations. J Exp Clin Cancer Res. 2018;37:47. https://doi.org/10.1186/s13046-018-0702-x.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT). J Mol Diagnostics. 2015;17:251–64. http://www.ncbi.nlm.nih.gov/pubmed/25801821.

    Article  CAS  Google Scholar 

  53. Hyman DM, Solit DB, Arcila ME, Cheng DT, Sabbatini P, Baselga J, et al. Precision medicine at memorial Sloan Kettering Cancer center: clinical next-generation sequencing enabling next-generation targeted therapy trials. Drug Discov Today. 2015;20:1422–8. https://www.sciencedirect.com/science/article/pii/S1359644615003219?via%3Dihub.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng DT, Prasad M, Chekaluk Y, Benayed R, Sadowska J, Zehir A, et al. Comprehensive detection of germline variants by MSK-IMPACT, a clinical diagnostic platform for solid tumor molecular oncology and concurrent cancer predisposition testing. BMC Med Genomics. 2017;10:33. https://doi.org/10.1186/s12920-017-0271-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. U.S. Food and Drug Administration. Premarket Approval (PMA). 2018. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P160045.

  56. U.S. Food and Drug Administration. Recently-approved devices – FoundationOne CDx – P170019. 2017. https://www.fda.gov/medicaldevices/productsandmedicalprocedures/deviceapprovalsandclearances/recently-approveddevices/ucm590331.htm.

  57. Caris Life Sciences. Precision Oncology Alliance. https://www.carislifesciences.com/precision-oncology-alliance/.

  58. ORIEN- Oncology Research Information Exchange Network. ORIEN- Oncology Research Information Exchange Network [Internet]. 2015. http://oriencancer.org/#about.

  59. Micheel CM, Sweeney SM, LeNoue-Newton ML, André F, Bedard PL, Guinney J, et al. American Association for Cancer Research project genomics evidence neoplasia information exchange: from inception to first data release and beyond—lessons learned and member institutions’ perspectives. JCO Clin Cancer Informatics. 2018;2:1–14. https://doi.org/10.1200/CCI.17.00083.

    Article  Google Scholar 

  60. Tempus. Tempus – Data-Driven Precision Medicine. 2018. https://www.tempus.com/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J. (2020). Tumor Sequencing: Enabling Personalized Targeted Treatments with Informatics. In: Adam, T., Aliferis, C. (eds) Personalized and Precision Medicine Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-18626-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18626-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18625-8

  • Online ISBN: 978-3-030-18626-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics