Skip to main content

Fungal Diseases of Honey Bees: Current Status and Future Perspective

  • Chapter
  • First Online:
Recent Developments in Fungal Diseases of Laboratory Animals

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungi are multicellular, eukaryotic, heterotrophic organisms which were once considered to be the ancient member of the plant kingdom but became opportunistic pathogens in animals, depending on the latter’s immune status. The microsporidia, a fungal-related parasite, is a highly specialized, obligate, intracellular pathogen of insects. The major effect of microsporidiosis, the infection caused by the microsporidia, is on pollinators, and, among the pollinators, chiefly on the honey bee population. Bees, unfortunately, are reported to be undergoing speedy decline because of survival needs and opportunistic misuse, and also due to being subjected to the assault of several parasites, parasitoids, and predators. Microsporidia is one of the important entomopathogens considered to impede the captive rearing of insects. However, studies on microsporidian association with honey bees and their immune system are scarce in India and the world over. Apart from microsporidian impact as the major cause of bee depopulation, there are incidences of other fungal pathogens, such as stonebrood and chalkbrood diseases of bees, that are affecting bees’ health. Hence, for optimum commercial and ecological benefit, extensive work needs to be undertaken for their preservation. Bunch rearing of honey bees in flourished and healthy fruit and crop gardens is the most effective way to conserve them, and is also a measure to keep them free from parasites and diseases. This literature review briefly provides information about the importance of honey bees, their role in the ecosystem, and the impact of microsporidian disease, one of the most significant and less often studied diseases, on the honey bee population worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2009) How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann Bot 103:1579–1588

    Article  PubMed  PubMed Central  Google Scholar 

  • Alaux C, Folschweiller M, McDonnell C, Beslay D, Cousin M, Dussaubat C, Brunet JL, Le Conte Y (2011) Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). J Invertebr Pathol 106:380–385

    Article  PubMed  Google Scholar 

  • Alberoni D, Baffoni L, Gaggia F, Ryan P, Murphy K, Ross RP, Biavati B, Stanton C, Di Gioia D (2015) Administration of lactobacilli and bifidobacteria on Apis mellifera L. beehives to increase health of the bee super-organism. In: Microbial diversity 2015, the challenge of complexity. Perugia, pp 107–108

    Google Scholar 

  • Anderson DL, Giacon H (1992) Reduced pollen collection by honey bee (Hymenoptera: Apidae). Colonies infected with Nosema apis and Sacbrood virus. J Econ Entomol 85:47–51

    Article  Google Scholar 

  • Antunez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290

    Article  CAS  PubMed  Google Scholar 

  • Bailey L (1963) Infectious diseases of the honey-bee. Land Books Ltd, London, p 176

    Google Scholar 

  • Bailey L (1972) The preservation of infective microsporidian spores. J Invertebr Pathol 20:252–254

    Article  Google Scholar 

  • Bailey L (1981) Honey bee pathology. Academic Press, London, p 124

    Google Scholar 

  • Bailey L, Ball BV (1991) Microspora and Protozoa. In: Bailey L, Ball BV (eds) Honey bee pathology. Academic Press, London, pp 64–77

    Chapter  Google Scholar 

  • Balbiani G (1882) Sur les microsporidies ou psorospermies des Articulés. C R Acad Sci 95:1168–1171

    Google Scholar 

  • Baracchi D, Francese S, Turillazzi S (2011) Beyond the antipredatory defence: honey bee venom function as a component of social immunity. Toxicon 1058(6–7):550–557

    Article  CAS  Google Scholar 

  • Barcandritsos N, Granato A, Budge G, Papanastasiou I, Roinioti E, Caldon M, Falco C, Gallina A, Mutinelli F (2010) Sudden deaths and colony population decline in Greek honey bee colonies. J Invertebr Pathol 105:335–340

    Article  Google Scholar 

  • Berrilli F, D’Alfonso R, Giangaspero A, Marangi M, Brandonisio O, Kaboré Y, Glé C, Cianfanelli C, Lauro R, Di Cave D (2012a) Giardia duodenalis genotypes and Cryptosporidium species in humans and domestic animals in Côte d’Ivoire: occurrence and evidence for environmental contamination. Trans R Soc Trop Med Hyg 106:191–195

    Article  PubMed  Google Scholar 

  • Berrilli F, Di Cave D, Cavallero S, D’Amelio S (2012b) Interactions between parasites and microbial communities in the human gut. Front Cell Infect Microbiol 2:141. https://doi.org/10.3389/fcimb.2012.00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdanov S, Kilchenmann V, Seiler K, Pfefferli H, Frey TH et al (2004) Residues of para-dichlorobenzene in honey and beeswax. J Apic Res 43:14–16

    Article  CAS  Google Scholar 

  • Botias C, Martín-Hernández R, Barrios L, Meana A, Higes M (2013) Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet Res 44:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Bromenshenk JJ (2010) Colony collapse disorder (CCD) is alive and well. Bee Cult 138:51

    Google Scholar 

  • Burnside CE (1930) Fungus diseases of the honey bee. Technical Bulletin 149, U.S. Department of Agriculture

    Google Scholar 

  • Cali A, Takvorian PM (1999) Developmental morphology and life cycles of the Microsporidia. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis. ASM Press, Washington, D.C., pp 85–128

    Chapter  Google Scholar 

  • Campbell C, Frankenhuyzen K, Smith S (2010) Incubation period, spore egestion and horizontal transmission of Nosema fumiferanae (Mirsporidia: Nosematidae) in spruce budworm (Choristoneura sp., Lepidoptera: Tortricidae): the role of temperature and dose. J Invertebr Pathol 94:204–210

    Article  Google Scholar 

  • Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS (2014) Effects of host age on susceptibility to infection and immune gene expression in honey bee queens (Apis mellifera) inoculated with Nosema ceranae. Apidologie 45:451–463

    Article  CAS  Google Scholar 

  • Chen Y, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97:186–188

    Article  PubMed  Google Scholar 

  • Chen Y, Evans JD, Murphy C, Gutell R, Zuker M, Gundensen-Rindal D, Pettis JS (2009a) Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. J Eukaryot Microbiol 56(2):142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Evans JD, Zhou L, Boncristiani H, Kimura K, Xiao TG, Litkowski AM, Pettis JS (2009b) Asymmetrical coexistence of Nosema ceranae and Nosema apis in honeybees. J Invertebr Pathol 101:204–209

    Article  PubMed  Google Scholar 

  • Costa C, Lodesani M, Maistrello L (2010) Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie 41:141–150

    Article  Google Scholar 

  • Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  • Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Philos Trans R Soc Lond B Biol Sci 364:129–142

    Article  PubMed  Google Scholar 

  • Crnivec IGO (2016) Microsporidian Nosema spp. As a model gastrointestinal microorganism of carniolan honey bee (Apis mellifera Carnica, Pollman, 1879): aspects of spore counting. Acta Agric Slovenica 5:143–147

    Google Scholar 

  • Czekonska K (2000) The influence of Nosema apis on young honeybee queens and transmission of the disease from queens to workers. Apidologie 31:701–706

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Delaplane KS, Mayer DF (2000) Crop pollination by bees. CABI Publishing, New York

    Book  Google Scholar 

  • Dussaubat C, Maisonnasse A, Alaux C et al (2010) Nosema spp. infection alters pheromone production in honey bees (Apis mellifera). J Chem Ecol 36:522–525

    Article  CAS  PubMed  Google Scholar 

  • Dussaubat C, Brunet JL et al (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One 7(5):e37017. https://doi.org/10.1371/journal.pone0037017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dussaubat C, Maisonnasse A, Crauser D, Beslay D, Costagliola G, Soubeyrand S et al (2013) Flight behaviour and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J Invertebr Pathol 113:42–51

    Article  CAS  PubMed  Google Scholar 

  • Dworecka-Kaszak B, Parazytol W (2008) Animals as a potential source of human fungal infections. Wiad Parazytol 54(2):101–108

    PubMed  Google Scholar 

  • Evison SEF, Roberts KE, Laurenson L, Pietravalle S, Hui J et al (2012) Pervasiveness of parasites in pollinators. PLoS One 7(1):e30641. https://doi.org/10.1371/journal.pone.0030641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsgren E, Fries I (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet Parasitol 170:212–217

    Article  PubMed  Google Scholar 

  • Fowler JL, Reeves EL (1975) In vivo propagation of a microsporidian pathogenic to insects. J Invertebr Pathol 25:349–353

    Article  CAS  PubMed  Google Scholar 

  • Freeman MA, Sommerville C (2011) Original observations of Desmozoon lepeophtherii, a microsporidian hyperparasite infecting the salmon louse Lepeophtheirus salmonis, and its subsequent detection by other researchers. Parasit Vectors 4:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Fries I (1988) Comb replacement and Nosema disease (Nosema apis) in honey bee colonies. Apidologie 19(4):343–354

    Article  Google Scholar 

  • Fries I (1989) Observation on the development and transmission of Nosema apis Z. in the ventriculus of the honey bee. J Apic Res 28:107–117

    Article  Google Scholar 

  • Fries I (1993) Nosema apis a parasite in the honey bee colony. Bee World 74(1)):5–19

    Article  Google Scholar 

  • Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79

    Article  PubMed  Google Scholar 

  • Fries I, Ekbohm G, Villumstad E (1984) Nosema apis, sampling techniques and honey yield. J Apic Res 23:102–105

    Article  Google Scholar 

  • Fries I, Granados RR, Morse RA (1992) Intracellular germination of spores Nosema apis Z. Apidologie 23:61–71

    Article  Google Scholar 

  • Fries I, Feng F, Silva AD, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365

    Article  Google Scholar 

  • Furgala B (1962a) The effect of the intensity of Nosema inoculums on queen supersedure in the honey bee, Apis mellifera Linnaeus. J Invectebr Pathol 4:429–432

    Google Scholar 

  • Furgala B (1962b) Residual fumagillin activity in sugar syrup stored by wintering honeybee colonies. J Apic Res 1:35–37

    Article  Google Scholar 

  • Gisder S, Moeckel N, Linde A et al (2011) A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee pathogenic microsporidia. Environ Microbiol 13:404–413

    Article  CAS  PubMed  Google Scholar 

  • Goblirsch M, Huang ZY, Spivak M (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 8:e58165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorc A, Fijan N, Poklukar J (1992) The effect of Apis mellifera carnica Pol m. worker bee source for populating mating nuclei on degree of infection by Nosemaapis Zander. Apidologie 21:241–244

    Article  Google Scholar 

  • Gregory PG, Evans JD, Rinderer T, de Guzman L (2005) Conditional immune-gene suppression of honeybees parasitized by Varroa mites. J Insect Sci 5(1):7. https://doi.org/10.1093/jis/5.1.7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamidyzzaman MM, Guzman-Novoa E, Goodwin PH (2010) A multiplex PCR assay to diagnose and quantify Nosema infection in honey bees (Apis mellifera). J Invertebr Pathol 105(2):151–155

    Article  Google Scholar 

  • Hassanein MH (1951) Studies on the effect of infection with Nosema apis on the physiology of the queen honey-bee. J Cell Sci 92:225–231

    Google Scholar 

  • Hedtke K, Jensen PM, Jensen AB, Genersch E (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J Invertebr Pathol 108:167–173

    Article  PubMed  Google Scholar 

  • Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honey bees in Europe. J Invertebr Pathol 92:93–95

    Article  CAS  PubMed  Google Scholar 

  • Higes M, Garcίa-Palencίa P, Martίn-Hernάndez R, Meana A (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J Invertebr Pathol 94:211–217

    Article  PubMed  Google Scholar 

  • Higes M, Martin-Hernandez R, Botias C, Garrido-Bailon E, Gonzalez-Porto AV, Barrios L, del Nozal MJ, Berna JL, Jimenez JJ, Garcia-Palencia P, Meana A (2008a) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669

    Article  PubMed  Google Scholar 

  • Higes M, Martin-Hernandez R, Garrido-Bailon E et al (2008b) Detection of infective Nosema ceranae (Microsporidia) spores in corbicular pollen of forager honeybees. J Invertebr Pathol 97:76–78

    Article  PubMed  Google Scholar 

  • Higes M, Martin-Hernandez R, Garcia-Palencia P et al (2009) Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environ Microb Rep 1:495–498

    Article  Google Scholar 

  • Holt HL, Aronstein KA, Grozinger CM (2013) Chronic parasitization by Nosema microsporidia causes global expression changes in core nutritional, metabolic and behavioral pathways in honey bee workers (Apis mellifera). BMC Genomics 14:799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang WF, Solter LF (2013) Comparative development and tissue tropism of Nosema apis and Nosema ceranae. J Invertebr Pathol 113:35–41

    Article  PubMed  Google Scholar 

  • Huang WF, Jiang JH, Chen YW, Wang CH (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37

    Article  Google Scholar 

  • Huang Q, Kryger P, Le Conte Y, Moritz RFA (2012) Survival and immune response of drones of a nosemosis tolerant honey bee strain towards N. ceranae infections. J Invertebr Pathol 109:297–302

    Article  PubMed  Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266

    Article  PubMed  Google Scholar 

  • Kashyap D, Mishra S, Jaiswal K (2018) Anultra structure of microsporidia in honey bees (Apis mellifera) by microscopic techniques. Int J Res Appl Sci Eng Technol 6:1982–1987

    Article  Google Scholar 

  • Kralj J, Fuchs S (2009) Nosema sp influences flight behaviour of infected honey bee (Apis mellifera) foragers. Apidologie 41:21–28

    Article  Google Scholar 

  • Kshirsagar KK (1978) Disorders of bees in India. Indian Bee J 45:39

    Google Scholar 

  • Kshirsagar KK (1982) Current incidence of honey bee diseases and parasites in India. Bee World 63:162–164

    Article  Google Scholar 

  • Kurze C, Le Conte Y, Dussaubat C, Erler S, Kryger P, Lewkowski O et al (2015) Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One 10(10):e0140174. https://doi.org/10.1371/journal.pone.0140174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebert (1856–1857) Über die gegenwärtig herrschende Krankheit des Insektesder Seide. In: Jahresbericht über die Wirksamkeit des Vereinszur Beförderung des Seidenbaues für die Provinz Brandenburg, pp 16–74 (reprinted in Berliner EntomologischeZeitschrift 1858; 2: 149–86)

    Google Scholar 

  • Leoncini I, Le Conte Y, Costagliola G, Plettner E, Toth AL, Wang MW, Huang Z, Becard JM, Crauser D, Slessor KN, Robinson GE (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. PNAS 101:17559–17564

    Article  CAS  PubMed  Google Scholar 

  • Li X, Fayer R (2006) Infectivity of microsporidian spores exposed to temperature extremes and chemical disinfectants. J Eukaryot Microbiol 53(S1):S77–S79

    Article  PubMed  Google Scholar 

  • Liu TP (1990) Ultrastructural changes in the secretion granules of the hypopharyngeal glands of the honeybee infected by Nosema apis and after treatment with fumagillin. Tissue Cell 22:523–531

    Article  CAS  PubMed  Google Scholar 

  • Lom J, Vavra J (1961) Niektore Wyniki Baden Nad Ultrastruktura Spor Posozyta Ryb Plistophora hyphessobrycornis (Microsporidia). Wiad Parazytol 7:828–832

    CAS  PubMed  Google Scholar 

  • Loskotova J, Peroutka M, Vesely V (1980) Nosema disease of honeybee queens (Apis mellifica). Apidologie 11:153–161

    Article  Google Scholar 

  • Maassen A (1906) Die Aspergillusmykose der Bienen. Mitteilungen aus der Kaiserlichen. Biol Anst Land Forstwirtsch 2:30–31

    Google Scholar 

  • Martin-Hernandez R, Meana A, García-Palencia P, Marin P, Botias C, GarridoBailon E, Barrios L, Higes M (2009) Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 75(8):2554–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Hernandez R, Botias C, Barrios L et al (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol Res 109:605–612

    Article  PubMed  Google Scholar 

  • Matheson A (1993) World bee health report. Bee World 74:176–212

    Article  Google Scholar 

  • Maurizio A (1934) Uber die Kaltbrut (Pericystis-Mykose) der Bienen. Archiv Bienenkunde 15:165–193

    Google Scholar 

  • Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 1:85–88

    Google Scholar 

  • Mayack C, Naug D (2010) Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. J Insect Physiol 56(11):1572–1575

    Article  CAS  PubMed  Google Scholar 

  • McGregor SE (1976) Insect pollination of cultivated crop-plants. U.S.D.A.. Agriculture Handbook no. 496, Washington, D.C., pp 93–98

    Google Scholar 

  • Menapace DM, Wilson WT (1979) Feeding oxytetracyclines as Terramycin does not aggravate chalkbrood infections. Apidologie 10:167–174

    Article  CAS  Google Scholar 

  • Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Milbrath MO, van Tran T, Huang WF, Solter LF, Tarpy DR, Lawrence F, Huang ZY (2015) Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). J Invertebr Pathol 125:9–15. https://doi.org/10.1016/j.jip.2014.12.006

    Article  PubMed  Google Scholar 

  • Nageli KV (1857) Über die neue Krankheit der Seidenraupe und verwandte Organismen. Bot Ztg 15:760–761

    Google Scholar 

  • Nelson DL, Gochnauer TA (1982) Field and laboratory studies on chalkbrood disease of honey bees. Am Bee J 122:29–34

    Google Scholar 

  • Paldi N et al (2010) Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. App Environ Microbiol 76:5960–5964

    Article  CAS  Google Scholar 

  • Papini R, Mancianti F, Canovai R, Cosci F, Rocchigiani G, Benelli G, Canale A (2017) Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera) apiaries in Central Italy. Saudi J Biol Sci 24:979–982

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasteur L (1870) Etudes sur la maladie des vers a Soie. Gauthier–Villars. Imprimeur–Libraire, Paris, p 322

    Google Scholar 

  • Paxton RJ (2010) Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J Apic Res 49:80–84

    Article  Google Scholar 

  • Pickard RS, Elshemy AAM (1989) Seasonal variation in the infection of honeybee colonies with Nosema apis Zander. J Apic Res 28:93–100

    Article  Google Scholar 

  • Poddubnaya LG, Tokarev YS, Issi IV (2006) A new microsporidium Paratuzetia kupermani gen. et sp. N. (microsporidia), a hyperparasite of the procercoid of the cestode Khawia armeniaca Chol. 1915 (Cestoda, Caryophyllidea). Protistology 4(3):269–277

    Google Scholar 

  • Porrini MP, Audisio CM, Sabate DC et al (2010) Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitol Res 107:381–388

    Article  PubMed  Google Scholar 

  • Porrini M, Fernández N, Garrido P, Gende L, Medici S et al (2011) In vivo evaluation of antiparasitic activity of plant extracts on Nosema ceranae (Microsporidia). Apidologie 42(6):700–707

    Article  Google Scholar 

  • Ptaszyńska AA, Borsuk G, Mułenko W, Demetraki-Paleolog J (2014) Differentiation of Nosema apis and Nosema ceranae spores under Scanning Electron Microscopy (SEM). J Apic Res 53(5):537–544

    Article  Google Scholar 

  • Quatrefages A (1860) Etudes sur les maladies actuelles du vers à soie. Mém Acad Sci Inst Imper France:1–640

    Google Scholar 

  • Rana BS, Katna S (2011) Incidence of Nosema disease in Apis mellifera L. of the North India. Insect Environ 17:143–144

    Google Scholar 

  • Ratnieks FLW, Carreck NL (2010) Clarity on honey bee collapse? Science 327:152–153

    Article  CAS  PubMed  Google Scholar 

  • Retschnig G, Williams GR, Schneeberger A, Neumann P (2017) Cold ambient temperature promotes Nosema spp. intensity in honey bees (Apis mellifera). Insects 8(1):E20. https://doi.org/10.3390/insects8010020

    Article  PubMed  Google Scholar 

  • Richard FJ, Tarpy DR, Grozinger CM (2007) Effects of insemination quantity on honey bee queen physiology. PLoS One 2:e980

    Article  PubMed  PubMed Central  Google Scholar 

  • Roubik DW (2002) The value of bees to the coffee harvest. Nature 417:708. https://doi.org/10.1038/417708a

    Article  CAS  PubMed  Google Scholar 

  • Sánchez Collado JG, Higes M, Barrio L, Martín-Hernández R (2014) Flow cytometry analysis of Nosema species to assess spore viability and longevity. Parasitol Res 113:1695–1701

    Article  PubMed  Google Scholar 

  • Schmid-Hempel R, Schmid-Hempel P (1998) Colony performance and immune-competence of a social insect, Bombus terristris, in poor and variable environment. Funct Ecol 12:22–30

    Article  Google Scholar 

  • Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63(11):3016–3022. https://doi.org/10.1111/j.1558-285646.2009.00772.x

    Article  CAS  PubMed  Google Scholar 

  • Singh Y (1975) Nosema in Indian honey bees. Indian Bee J 36:16

    Google Scholar 

  • Singh M, Kane GJ, Mackinlay L, Quaki I, Yap EH, Ho BC, Ho LC, Lim KC (1982) Detection of antibodies to Nosema cuniculi (Protozoa: Microscoporidia) in human and animal sera by the indirect fluorescent antibody technique. Southeast Asian J Trop Med Public Health 13:110–113

    CAS  PubMed  Google Scholar 

  • Smart MD, Sheppard WS (2012) Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). J Invertebr Pathol 109:148–151

    Article  PubMed  Google Scholar 

  • Smith ML (2012) The honey bee parasite Nosema ceranae: transmissible via food exchange? PLoS One 7(8):e43319. https://doi.org/10.1371/journal.pone.0043319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357

    Article  PubMed  Google Scholar 

  • Sokolova YY, Lange CE, Mariottini Y, Fuxa JR (2009) Morphology and taxonomy of the microsporidium Liebermannia covasacrae n. sp.from the grasshopper Covasacris pallidinota (Orthoptera, Acrididae). J Invertebr Pathol 101:34–42

    Article  PubMed  Google Scholar 

  • Sokolova YY, Lange CE, Fuxa JR (2006) Development, ultrastructure, natural occurrence, and molecular characterization of Liebermannia patagonica n. g., n. sp., a microsporidian parasite of the grasshopper Tristira magellanica (Orthoptera: Tristiridae). J Invertebr Pathol 91(3):168–182

    Article  PubMed  Google Scholar 

  • Spiltoir CF (1955) Life cycle of Ascosphaera apis. Am J Bot 42:501–518

    Article  Google Scholar 

  • Sprague V (1982) Microspora. In: Parker SP (ed) Synopsis and classification of living organisms. McGraw-Hill, New York, pp 589–594

    Google Scholar 

  • Sprague V, Vavra J (1977) Systematics of the microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology. Plenum, New York

    Google Scholar 

  • Stanimirovic Z, Stevanovic J, Bajic V, Radovic I (2007) Evaluation of genotoxic effects of fumagillin by cytogenetic tests in vivo. Mutat Res 628:1–10

    Article  CAS  PubMed  Google Scholar 

  • Suwannapong G, Maksong S, Seanbualuang P, Benbow ME (2010) Experimental infection of red dwarf honeybee, Apis florea, with Nosema ceranae. J Asia Pac Entomol 13(4):361–364

    Article  Google Scholar 

  • Tlak GI, Vugrek O, Pinter LJ, Petrinec Z (2009) “Nozevit patties” treatment of honeybees (Apis mellifera) for the control of Nosema ceranae disease. Am Bee J 149:1053–1056

    Google Scholar 

  • Traver BE, Fell RD (2012) Low natural levels of Nosema ceranae in Apis mellifera queens. J Invertebr Pathol 110:408–410

    Article  PubMed  Google Scholar 

  • VanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS One 4:e648

    Article  CAS  Google Scholar 

  • Vavilova VY, Konopatskaia I, Luzyanin SL, Woyciechowski M, Blinov AG (2017) Parasites of the genus Nosema, Crithidia and Lotmaria in the honeybee and bumblebee populations: a case study in India. Vavilov J Genet Breed 21:943–951

    Article  Google Scholar 

  • Vavra J, Larsson JIR (1999) Structure of the microsporidia. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis, vol 553. ASM Press, Washington, D.C., pp 7–84

    Chapter  Google Scholar 

  • Vavra J, Lukes J (2013) Microsporidia and ‘the art of living together’. Adv Parasitol 82:253–319

    Article  PubMed  Google Scholar 

  • Wang DI, Moeller FE (1969) Histological comparisons of the development of hypopharyngeal glands in healthy and nosema-infected worker honey bees. J Invertebr Pathol 14:135–142

    Article  Google Scholar 

  • Wang DI, Moeller FE (1970) The division of labor and queen attendance behaviour of nosema-infected worker honey bees. J Econ Entomol 63:1539–1541

    Article  Google Scholar 

  • Wang DI, Moeller FE (1971) Ultrastructural changes in hypopharyngeal glands of worker honey bees infected by Nosema apis. J Invertebr Pathol 17:308–312

    Article  Google Scholar 

  • Weber R, Bryan RT, Owen RL, Wilcox CM, Gorelkin L, Visvesvara GS, The Enteric Opportunistic Infections Working Group (1992) Improved light-microscopical detection of microsporidia spores in stool and duodenal aspirates. N Engl J Med 326:161–166

    Article  CAS  PubMed  Google Scholar 

  • Weiss LM, Vossbrinck C (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia. In: Wittner M (ed) The microsporidia and microsporidiosis. ASM Press, Washington, D.C., pp 129–171

    Chapter  Google Scholar 

  • Williams GR, Sampson MA, Shutler D, Rogers REL (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera). J Invertebr Pathol 99:342–344

    Article  CAS  PubMed  Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Ann Rev Entomol 54:405–423

    Article  CAS  Google Scholar 

  • Yoshiyama M, Kimura K (2010) Characterization of antimicrobial peptide genes from Japanese honeybee Apis cerana japonica (Hymenoptera: Apidae). Appl Entomol Zool 45(4):609–614. https://doi.org/10.1303/aez.2010.609

    Article  CAS  Google Scholar 

  • Yucel B, Gogaroglu M (2005) The impact of Nosema apis Z. infestation of honey bee (Apis mellifera L.) colonies after using different treatment methods and their effects on the population levels of workers and honey production on consecutive years. Pak J Biol Sci 8:1142–1145

    Article  Google Scholar 

  • Zander E (1909) Tierische Parasiten als Krankheitserreger bei der Biene. Leipziger Bienenztg 24:147–150, 164–166

    Google Scholar 

Download references

Acknowledgement

The authors (DK and HP) wish to thank Babasaheb Bhimrao Ambedkar University and the University Grants Commission for the financial support in the form of a Non-NET Research Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, D., Pandey, H., Jaiswal, K., Mishra, S. (2019). Fungal Diseases of Honey Bees: Current Status and Future Perspective. In: Gupta, A., Singh, N. (eds) Recent Developments in Fungal Diseases of Laboratory Animals. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-18586-2_2

Download citation

Publish with us

Policies and ethics