Skip to main content

Cell Sheets for Cardiac Tissue Engineering

  • Living reference work entry
  • First Online:
Organ Tissue Engineering

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 185 Accesses

Abstract

Recent studies have reported that the injection of isolated cells can improve cardiac function in models of myocardial infarction. However, the loss of transplanted cells from the target site due to local hypoxia and cell washout remains a major problem. To overcome these limitations, we have developed cell sheet-based tissue engineering that allows the generation of confluent cultured cells, stacked cell sheets, and three-dimensional (3D) cell-dense tissues. Cell sheet-based patches can improve the function of damaged hearts in animal models. Stacked cardiac cell sheets beat synchronously both in vitro and in vivo and have the characteristic structure of native heart tissue. Upscaling of this technology through multistep transplantation of triple-layered cell sheets allowed the construction of functional cardiac tissue about 1 mm thick. Furthermore, we succeeded in bioengineering 3D cardiac tissue containing a vascular network by in vitro perfusion culture of cell sheets stacked sequentially on a vascular bed obtained from resected tissue. Since the vascular bed was excised with its artery and vein intact, the bioengineered tissue could be transplanted by anastomosis of its vessels with those of the host animal. Following the creation of cardiac patches for direct implantation onto a damaged heart, the next challenge will be to engineer organs with tubular or spherical structures that can function as pumps to provide circulatory support. The goal for the future is to develop this technology to create functional organ-like tissues with vascular networks that can be used in patients as an alternative to conventional organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Birla RK, Dow DE, Huang YC, Migneco F, Khait L, Borschel GH, Dhawan V, Brown DL (2008) Methodology for the formation of functional, cell-based cardiac pressure generation constructs in vitro. In Vitro Cell Dev Biol Anim 44(8–9):340–350

    Google Scholar 

  • Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 277(2):H433–H444

    Google Scholar 

  • Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893

    Google Scholar 

  • Chouinard JA, Gagnon S, Couture MG, Levesque A, Vermette P (2009) Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures. Biotechnol Bioeng 104(6): 1215–1223

    Google Scholar 

  • Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48(5):907–913

    Google Scholar 

  • Evans HJ, Sweet JK, Price RL, Yost M, Goodwin RL (2003) Novel 3D culture system for study of cardiac myocyte development. Am J Physiol Heart Circ Physiol 285(2):H570–H578

    Google Scholar 

  • Franchini JL, Propst JT, Comer GR, Yost MJ (2007) Novel tissue engineered tubular heart tissue for in vitro pharmaceutical toxicity testing. Microsc Microanal 13(4):267–271

    Google Scholar 

  • Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27(27):4765–4774

    Google Scholar 

  • Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H, Sawa Y (2006) Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg 132(4):918–924

    Google Scholar 

  • Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202

    Google Scholar 

  • Homma J, Sekine H, Matsuura K, Yamato M, Shimizu T (2017) Myoblast cell sheet transplantation enhances the endogenous regenerative abilities of infant hearts in rats with myocardial infarction. J Tissue Eng Regen Med 11(6):1897–1906

    Google Scholar 

  • Hudson W, Collins MC, deFreitas D, Sun YS, Muller-Borer B, Kypson AP (2007) Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J Surg Res 142(2):263–267

    Google Scholar 

  • Kondoh H, Sawa Y, Miyagawa S, Sakakida-Kitagawa S, Memon IA, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H (2006) Longer preservation of cardiac performance by sheet-shaped myoblast implantation in dilated cardiomyopathic hamsters. Cardiovasc Res 69(2): 466–475

    Google Scholar 

  • Kubo H, Shimizu T, Yamato M, Fujimoto T, Okano T (2007) Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials 28(24): 3508–3516

    Google Scholar 

  • Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res 45(4):355–362

    Google Scholar 

  • Kutschka I, Chen IY, Kofidis T, von Degenfeld G, Sheikh AY, Hendry SL, Hoyt G, Pearl J, Blau HM, Gambhir SS, Robbins RC (2007) In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J Heart Lung Transplant 26(3):273–280

    Google Scholar 

  • Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Google Scholar 

  • Lee EJ, Kim DE, Azeloglu EU, Costa KD (2008) Engineered cardiac organoid chambers: toward a functional biological model ventricle. Tissue Eng Part A 14(2):215–225

    Google Scholar 

  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3):III56–III61

    Google Scholar 

  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM (1999) Survival and function of bioengineered cardiac grafts. Circulation 100(19 Suppl):II63–II69

    Google Scholar 

  • Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, Sakakida SK, Kondoh H, Aleshin AN, Shimizu T, Okano T, Matsuda H (2005) Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg 130(5):1333–1341

    Google Scholar 

  • Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41(7):1078–1083

    Google Scholar 

  • Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200

    Google Scholar 

  • Michel JB (2003) Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol 23(12):2146–2154

    Google Scholar 

  • Miyagawa S, Sawa Y, Sakakida S, Taketani S, Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T, Matsuda H (2005) Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation 80(11):1586–1595

    Google Scholar 

  • Miyagawa S, Saito A, Sakaguchi T, Yoshikawa Y, Yamauchi T, Imanishi Y, Kawaguchi N, Teramoto N, Matsuura N, Iida H, Shimizu T, Okano T, Sawa Y (2010) Impaired myocardium regeneration with skeletal cell sheets – a preclinical trial for tissue-engineered regeneration therapy. Transplantation 90(4):364–372

    Google Scholar 

  • Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465

    Google Scholar 

  • Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416

    Google Scholar 

  • Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27(10):1243–1251

    Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Google Scholar 

  • Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, Mercier FE, Xiong L, Ghawi R, Scadden DT, Mathisen DJ, Ott HC (2015) Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 33(10):1097–1102

    Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034

    Google Scholar 

  • Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M, Okano T (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3:1316

    Google Scholar 

  • Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42(2):181–184

    Google Scholar 

  • Sekine H, Shimizu T, Kosaka S, Kobayashi E, Okano T (2006a) Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant 25(3):324–332

    Google Scholar 

  • Sekine H, Shimizu T, Yang J, Kobayashi E, Okano T (2006b) Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation 114(1 Suppl):I87–I93

    Google Scholar 

  • Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, Kurosawa H, Kobayashi E, Okano T (2008) Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118(14 Suppl):S145–S152

    Google Scholar 

  • Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, Kobayashi E, Yamato M, Okano T (2011) Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng Part A 17(23–24): 2973–2980

    Google Scholar 

  • Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, Kobayashi E, Umezu M, Okano T (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4:1399

    Google Scholar 

  • Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun 341(2):573–582

    Google Scholar 

  • Seta H, Matsuura K, Sekine H, Yamazaki K, Shimizu T (2017) Tubular cardiac tissues derived from human induced pluripotent stem cells generate pulse pressure in vivo. Sci Rep 7:45499

    Google Scholar 

  • Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538(7625):388–391

    Google Scholar 

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90(3):e40

    Google Scholar 

  • Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T (2006a) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12(3):499–507

    Google Scholar 

  • Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006b) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20(6):708–710

    Google Scholar 

  • Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651

    Google Scholar 

  • Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264(5155):98–101

    Google Scholar 

  • Terrovitis J, Lautamaki R, Bonios M, Fox J, Engles JM, Yu J, Leppo MK, Pomper MG, Wahl RL, Seidel J, Tsui BM, Bengel FM, Abraham MR, Marban E (2009) Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol 54(17):1619–1626

    Google Scholar 

  • Wilmut I, Leslie S, Martin NG, Peschanski M, Rao M, Trounson A, Turner D, Turner ML, Yamanaka S, Taylor CJ (2015) Development of a global network of induced pluripotent stem cell haplobanks. Regen Med 10(3):235–238

    Google Scholar 

  • Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol Chem Rapid 11(11):571–576

    Google Scholar 

  • Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T (2005) Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26(33): 6415–6422

    Google Scholar 

  • Yildirim Y, Naito H, Didie M, Karikkineth BC, Biermann D, Eschenhagen T, Zimmermann WH (2007) Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116(11 Suppl):I16–I23

    Google Scholar 

  • Yost MJ, Baicu CF, Stonerock CE, Goodwin RL, Price RL, Davis JM, Evans H, Watson PD, Gore CM, Sweet J, Creech L, Zile MR, Terracio L (2004) A novel tubular scaffold for cardiovascular tissue engineering. Tissue Eng 10(1–2):273–284

    Google Scholar 

  • Zandonella C (2003) Tissue engineering: the beat goes on. Nature 421(6926):884–886

    Google Scholar 

  • Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921

    Google Scholar 

  • Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Masse S, Kim J, Reis L, Momen A, Nunes SS, Wheeler AR, Nanthakumar K, Keller G, Sefton MV, Radisic M (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 15(6):669–678

    Google Scholar 

  • Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12(4):452–458

    Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS KAKENHI grant number 19H04453. We thank OxMedComms (www.oxmedcomms.com) for writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Sekine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sekine, H., Homma, J., Shimizu, T. (2020). Cell Sheets for Cardiac Tissue Engineering. In: Eberli, D., Lee, S., Traweger, A. (eds) Organ Tissue Engineering. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-18512-1_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18512-1_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18512-1

  • Online ISBN: 978-3-030-18512-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics