Skip to main content

Soil Pollution

  • Chapter
  • First Online:
The Soils of Georgia

Part of the book series: World Soils Book Series ((WSBS))

Abstract

Soils contaminated from water or air and by artificially applied toxic substances from pesticides, as well as mineral fertilizers, accumulate toxic elements, including heavy metals, having an extremely adverse impact on the living organisms. Among all kinds of economic activities, mining is the main source of pollution that deteriorates the agrophysical properties of soils and geoecological conditions in whole. The main ecological catastrophic zones in Georgia are discussed, related to the mining industry—Bolnisi metallogenic province (Kvemo Kartli Region) and Chiatura-Zestaponi manganese province (Imereti Region). Besides, pollution of soils and water with pesticides (chlorine-organic compounds) near the former chemical warehouses is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Tables 8.1 and 8.2 taken from the article (Matchavariani et al. 2015), originally published in the “Journal of Environmental Biology” (Copyright © 2015 Triveni Enterprises, Lucknow (India)). All Rights Reserved.

References

  • Ainsworth CC, Pilon JL, Grassman PL, Sluys WGVD (1994) Cobalt, cadmium and lead sorption to hydrous iron oxide: residence time effect. Soil Sci Soc Am J 58:1615–1623

    Article  CAS  Google Scholar 

  • Alloway BJ, Jackson AP, Morgan H (1990) The accumulation of Cd by vegetables grown on soils contaminated from variety of sources. Sci Total Environ 91:223–236

    Article  CAS  Google Scholar 

  • Amberger A (1996) Pflanzenernährung, 4th edn. UTB, Stuttgart Bes C, Mench MJ (2008) Remediation of copper contaminated topsoils from a wooden treatment facility using in-situ stabilization. Environ Pollut 156:1–11

    Google Scholar 

  • BBodSchV (1999) Bundes Bodenschutz und Altlastenverordnung 12 July 1999, Bundesgesetzblatt, Bundesanzeigerverlagsgesellschaft mbH, Köln

    Google Scholar 

  • BrĂĽmmer GW (2010) Böden als Pflanzenstandort. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 379–448

    Google Scholar 

  • Chlopecka A, Adriano DC (1997) Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Sci Total Environ 207:195–206

    Article  CAS  Google Scholar 

  • Commission regulation (EC) No 466/2006. Off J Eur Union Dec 2006 Luxemburg

    Google Scholar 

  • Contin M, Mondini C, Leita L, De Nobili M (2007) Enhanced soil toxic metal fixation in iron(hydr)oxides by redox cycles. Geoderma 140:164–175

    Article  CAS  Google Scholar 

  • DIN 11466 (1995) Soil quality—extraction of trace elements soluble in aqua regia. Beuth Verlag GmbH, Berlin, Deutsches Institut fĂĽr Normung

    Google Scholar 

  • DIN 19684–6: 1977–02 (1977) Methods of soil investigation for agricultural engineering—chemical laboratory tests—part 6: determination of iron soluble in oxalate solution. Beuth Verlag GmbH, Berlin, Deutsches Institut fĂĽr Normung

    Google Scholar 

  • DIN 19730: 2009–07 (2009) Soil quality—extraction of trace elements from soil using ammonium nitrate solution. Beuth Verlag GmbH, Berlin, Deutsches Institut fĂĽr Normung

    Google Scholar 

  • DIN ISO 10390 2005–12 (2005) Soil quality—determination of pH. Beuth Verlag GmbH, Berlin, Deutsches Institut fĂĽr Normung

    Google Scholar 

  • DIN ISO 10693 1997–05 (1997) Soil quality—determination of carbonate content—volumetric method. Beuth Verlag GmbH, Berlin, Deutsches Institut fĂĽr Normung

    Google Scholar 

  • DIN ISO 11260 1997–05 (1997) Soil quality—determination of effective cation exchange capacity and base saturation level using barium chloride solution. Beuth Verlag GmbH, Berlin, Deutsches Institut fĂĽr Normung

    Google Scholar 

  • DIN EN ISO 14688–1:2003–01 (2003) Geotechnical investigation and testing—identification and classification of soil—part 1: identification and description. Beuth Verlag GmbH, Berlin, Deutsches Institut fĂĽr Normung

    Google Scholar 

  • Felix-Henningsen P, Urushadze TF, Narimannidze EI, Wichmann L, Steffens D, Kalandadze B (2007) Heavy metal pollution of soils and food crops due to mining wastes in an irrigation district south of Tbilisi, eastern Georgia. Annal Agrarian Sci 5(3):11–27

    Google Scholar 

  • Ford RG (2007) Structural dynamics of metal partitioning to mineral surfaces. In: Hamon R, Mc Laughlin M, Lombi E (eds) Natural attenuation of trace element availability. Taylor and Francis, New York, pp 73–88

    Google Scholar 

  • Friesl W, Horak O (2006) Immobilisierung von Schwermetallen (Metalloide) oberflächennaher, groĂźflächiger Kontaminationen—Technischer Leitfaden. ARC Seibersdorf Research GmbH, Seibersdorf

    Google Scholar 

  • Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH (2006) Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch pot and field experiments. Environ Pollut 144:40–50

    Article  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528

    Article  CAS  Google Scholar 

  • Hanauer T, Shnell S, Steffens D, Kalandadze B, Navrozashvili L, Felix-Henningsen P (2011) In situ remediation of Cd, Cu and Zn contaminated topsoils by different amendments, EGU General Assembly, vol 13. XY488 EGU2011, pp 155–159

    Google Scholar 

  • Hanauer T, Felix-Henningsen P, Shteffens D, Kalandadze B, Navrozashvili L, Urushadze T (2011a) In situ stabilization of metals (Cu, Cd und Zn) in contaminatedsoils in the region of Bolnisi, Georgia. Plant Soil 341:193–208

    Article  CAS  Google Scholar 

  • Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390:35–44

    Article  CAS  Google Scholar 

  • Janssen RPT, Peijnenburg WJGM, Posthuma L, Magt VDH (1997) Equilibrium partitioning of heavy metals in Dutch fields. I. Relationship between metal partition coefficients and soil characteristics. Env Tox Chem 16:2470–2488

    Article  CAS  Google Scholar 

  • Kabata-Pendyas A, Pendyas H (1989) Microelements in soils and plants. Mir, Moscow

    Google Scholar 

  • Kalandadze B, Felix-Henningsen P (2014) Pollution of irrigation soils and cultural plants with heavy metals in the basin of the river Kvirila due to mining industry (West Georgia). Eurasian Soil Congress Abs, Istambul, Turkey

    Google Scholar 

  • Kalandadze B, Matchavariani L (2011) Impact of heavy metals on soils and plants in Mashavera river lowland, Georgia. In: Proceedings of international conference “soil, plant and food interactions. Mendel University, Brno, Chech Rep., 6–8 Sept, pp 587–598

    Google Scholar 

  • Kalandadze B, Trapaidze V (2015) Quantitative evaluation of the impact of heavy metals on soil productivity on the example of ore-dressing and processing production in east Georgia, SGEM, vol 1I, soils, forest ecosystems, marine and ocean ecosystems, pp 271–278

    Google Scholar 

  • Kalandadze B, Hanauer T, Felix-Henningsen P, Urushadze T, Narimanidze E, Steffens D (2009) Mining and agriculture in the Mashavera valley (South-East Georgia)—a land use conflict with severte consequences. Biol J Armenia LXI 2:22–29. National Academy of Sciences of the Republic of Armenia

    Google Scholar 

  • Kandeler E (2010) Bodenorganismen und ihr Lebensraum. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 83–119

    Google Scholar 

  • Khatisashvili G, Matchavariani L, Gakhokidze R (2015) Improving phytoremediation of soil polluted with oil hydrocarbons in Georgia. In: Chapter 19 in book “soil remediation and plants: prospects and challenges”. Elsevier—Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, pp 547–569

    Google Scholar 

  • Knox AS, Seaman J, Adriano DC (2000) Chemostabilization of metals in contaminated soils. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottermeier U (eds) Bioremediation of contaminted soils. Marcel Dekker, New York, Basel, pp 811–836

    Google Scholar 

  • Kovda V, Rozanov B (1988). Soils science. High school, Moscow (Pochvovedenie. Vishaya shkola, Moskva)

    Google Scholar 

  • Kretzschmar R (2010) Chemische Eigenschaften. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 122–170

    Google Scholar 

  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper and arsenic in soil. Environ Pollut 144:62–69

    Article  CAS  Google Scholar 

  • Lezhava VV, Matchavariani LG (1983) Preventing the adverse effects of pesticides on the environment. Georgian scientific-research institute for scientific-technical information, overview information (GSRISTI, OI), vol 3, issue 3, pp 44 (Predotvrashenie otritsatelnogo deistvia estitsidov na okruzhaiushuyu sredu. GruzNIINTI, OI)

    Google Scholar 

  • Lombi E, Zhao F-J, Wieshammer G, Zhang G, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: biological effects. Environ Pollut 118:445–452

    Article  CAS  Google Scholar 

  • Marschner B, MĂĽller I, Stolz R, Stempelmann I (2010) Immobilisierung von Schwermetallen in Gartenböden. Bodenschutz 02:34–41

    Google Scholar 

  • Matchavariani L, Kalandadze B (2012) Pollution of soils by heavy metals from irrigation near mining region of Georgia. vol. Forum Geogr XI(2):127–137

    Article  Google Scholar 

  • Matchavariani L, Kalandadze B, Lagidze L, Gokhelishvili N, Sulkhanishvili N, Paichadze N, Dvalashvili G (2015) Soil quality changes in response to their pollution of heavy metals in Georgia. J Environ Biol Spec Issue 36(1):85–91

    Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metals solubility in soils. Adv Soil Sci 10:1–56

    CAS  Google Scholar 

  • Mench M, Manceau A, Vangronsveld J, Clijsters H, Mocquot B (2000) Capacity of soil amendments in lowering the phytoavailability of sludge-born zinc. Agronomie 20:383–397

    Article  Google Scholar 

  • MĂĽller I (2000) Einfluss eisenoxidhaltiger Bodenzusätze auf die Mobilität von Schwermetallen in kontaminierten Böden. Dissertation, Boden und Landschaft 27. Justus Liebig University

    Google Scholar 

  • Nurzhanova A, Kalugin S, Zhambakin K (2013) Obsolete pesticides and application of colonizing plant species for remediation of contaminated soil in Kazakhstan. Environ Sci Pollut Res 20:2054–2063

    Article  CAS  Google Scholar 

  • Saet Yu, Basharkevich I, Revich B (1982) Methodical recommendations about a geochemical estimation of sources of environmental pollution. IMGRE

    Google Scholar 

  • Sastre J, Hernadez E, Rodriguez R, Alcobe X, Vidal M, Rauret G (2004) Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident. Sci Total Environ 329:261–281

    Article  CAS  Google Scholar 

  • Sauerbeck D (1982) Welche Schwermetallgehalte in Pflanzen dĂĽrfen nicht ĂĽberschritten werden, um Wachstumsbeeinträchtigungen zu vermeiden? Landwirtsch Forsch Special Edition 39:108–129

    CAS  Google Scholar 

  • Sayed MAHA (2006) Dynamik von Schwermetallen in belasteten schwarzerdeartigen Böden unter Bewässerung in SĂĽdost–Georgien. Dissertation, Boden und Landschaft 48, Justus Liebig University

    Google Scholar 

  • Schatz M, Babaev E, Kalandadze B, Beuhm L, Deuring A (2015) Persistent organic pollutants in transcaucasian soils and sediments—the invisible heritage of former Soviet Union. In: 15th EuCheMS international conference on chemistry and the environment, Leipzig, Germany

    Google Scholar 

  • VDLUFA (1976) Die chemische Untersuchung von Futtermitteln, 3. print. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, Speyer

    Google Scholar 

  • Stahr K (2010) Anorganische Komponenten der Böden-Minerale und Gesteine. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 7–49

    Google Scholar 

  • Usman ARAU (2004) Soil reclamation and conservation: evaluation of different additives for remediation and quality improvement of soil. Hohenheimer Bodenkundliche Hefte 73:Stuttgart

    Google Scholar 

  • Vazhenin I (1987) Methods of definition the microelements in soils and plants. Kolos, Moscow

    Google Scholar 

  • VDLUFA (1991) Methodenhandbuch I. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, Speyer

    Google Scholar 

  • VDLUFA (1997) PhosphordĂĽngung nach Bodenuntersuchung und Pflanzenbedarf. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, Darmstadt

    Google Scholar 

  • Vinogradov AP (1957) Geochemistry of rare and absent-minded chemical elements in soils. ASUSSR, Moscow

    Google Scholar 

  • Wilke B-M (2010) Gefährdung der Bodenfunktionen. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 449–520

    Google Scholar 

  • Zeien H (1995) Chemische Extraktion zur Bestimmung der Bindungsformen von Schwermetallen in Böden Bonner. Dissertation, Bodenkundliche Abhandlungen, vol 17. Rheinische Friedrichs Wilhelm University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besik Kalandadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalandadze, B., Matchavariani, L. (2019). Soil Pollution. In: Matchavariani, L. (eds) The Soils of Georgia. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978-3-030-18509-1_8

Download citation

Publish with us

Policies and ethics