Skip to main content

Enumerating Dominant Pathways in Biological Networks by Information Flow Analysis

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11488))

Included in the following conference series:

  • 477 Accesses

Abstract

Cells perceive and respond to their microenvironment as a part of their functioning via networks of processes resulting from molecular interactions. The complexity of such networks has been the subject of studies that address their various aspects. Some of these include static methods that focus on graph representations and their consequent properties, while others take a dynamical systems approach based on simulations. Here, we address the problem of identifying dominant pathways in biological networks that are represented as activation and repression edges. For this purpose, we propose a hybrid method that combines static graph properties with a dynamic quantification of information flow that results from stochastic simulations. We first illustrate our method on a simple example, and then apply it to the Escherichia coli transcription network consisting of 4639 regulatory edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the data and scripts are available for download at: ozan-k.com/pathways.zip.

  2. 2.

    ozan-k.com/pathways.zip.

References

  1. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)

    Article  Google Scholar 

  2. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)

    Article  Google Scholar 

  3. Erhard, F., Friedel, C.C., Zimmer, R.: FERN: a Java framework for stochastic simulation and evaluation of reaction networks. BMC Bioinform. 9, 356 (2008)

    Article  Google Scholar 

  4. Gama-Castro, S., et al.: RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res. 44(D1), D133–D143 (2016)

    Article  Google Scholar 

  5. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  6. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716 (2001)

    Article  Google Scholar 

  7. Kahramanoğulları, O.: On linear logic planning and concurrency. Inf. Comput. 207, 1229–1258 (2009)

    Article  MathSciNet  Google Scholar 

  8. Kahramanoğulları, O.: Quantifying information flow in chemical reaction networks. In: Figueiredo, D., Martín-Vide, C., Pratas, D., Vega-Rodríguez, M.A. (eds.) AlCoB 2017. LNCS, vol. 10252, pp. 155–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58163-7_11

    Chapter  Google Scholar 

  9. Kahramanoğulları, O., Lynch, J.: Stochastic flux analysis of chemical reaction networks. BMC Syst. Biol. 7, 133 (2013)

    Article  Google Scholar 

  10. Khatri, P., Sirota, M., Butte, A.J.: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8(2), e1002375 (2012)

    Article  Google Scholar 

  11. Kuwahara, H., Mura, I.: An efficient and exact stochastic simulation method to analyze rare events in biochemical systems. J. Chem. Phys. 129(16), 10B619 (2008)

    Article  Google Scholar 

  12. Ma, S., Jiang, T., Jiang, R.: Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Bioinformatics 31(4), 563–571 (2015)

    Article  Google Scholar 

  13. Ma’ayan, A., et al.: Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309(5737), 1078–83 (2005)

    Article  Google Scholar 

  14. Nielsen, M., Plotkin, G., Winskel, G.: Event structures and domains, part 1. Theor. Comput. Sci. 5(3), 223–256 (1981)

    MATH  Google Scholar 

  15. Persson, O.: Identifying research themes with weighted direct citation links. J. Informetr. 4(3), 415–422 (2010)

    Article  Google Scholar 

  16. Planes, F.J., Beasley, J.E.: A critical examination of stoichiometric and path-finding approaches to metabolic pathways. Brief. Bioinform. 9(5), 422–436 (2008)

    Article  Google Scholar 

  17. Randić, M.: Characterization of molecular branching. J. Am. Chem. Soc. 97(23), 6609–6615 (1975)

    Article  Google Scholar 

  18. Ravasz, E., et al.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  19. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–504 (2003)

    Article  Google Scholar 

  20. Zubarev, R.A., et al.: Identification of dominant signaling pathways from proteomics expression data. J. Proteomics 71(1), 89–96 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Kahramanoğulları .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kahramanoğulları, O. (2019). Enumerating Dominant Pathways in Biological Networks by Information Flow Analysis. In: Holmes, I., Martín-Vide, C., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2019. Lecture Notes in Computer Science(), vol 11488. Springer, Cham. https://doi.org/10.1007/978-3-030-18174-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18174-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18173-4

  • Online ISBN: 978-3-030-18174-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics