Skip to main content

Using the Electron Gas Model in Lower Secondary Schools—A Binational Design-Based Research Project

  • Chapter
  • First Online:
Concepts, Strategies and Models to Enhance Physics Teaching and Learning

Abstract

Students’ understanding of introductory electricity concepts can be fragmented even after instruction. Several reasons for this have been identified: electricity is an abstract and complex topic and traditional instruction frequently fails to meet students’ learning needs. As a consequence, conceptual change is not triggered and misconceptions prevail. Research findings show that the concept of voltage, in particular, presents many difficulties for students. This paper presents a research project from four working groups whom are collaborating to develop a teaching strategy for introductory electricity at lower secondary schools which is based on the electron gas model. Additionally, research finding from one project partners’ implementation of this teaching approach in a pilot study are reported. The concept of voltage is introduced as an electric pressure difference across a resistor in an electric circuit. The evaluation of this approach with more than 700 high school students shows very promising results. Based on these findings, a Design-Based Research project has been jointly developed between two German and two Austrian Universities. The aim of this study is to find out whether the significantly better performance of students instructed according to the electron gas model can be replicated with a wider sample of teachers and students across the project partners’ locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDermott, L.C., van Zee, E.H.: Identifying and addressing student difficulties with electric circuits. In: Duit, R., Jung, W., Rhöneck, C. (eds.) Aspects of Understanding Electricity, pp. 39–48 (1985)

    Google Scholar 

  2. Wilhelm, T., Müller, S., Burde, J.-P.: Vergleich von Schülervorstellungen zur Elektrizitätslehre in Hessen und Weißrussland. In: PhyDid B-Didaktik der Physik-Beiträge zur DPG-Frühjahrstagung, Wuppertal (2015). www.phydid.de. Accessed 30 Sep 2017

  3. Burde, J.-P., Wilhelm, T.: The electron gas model as an introduction to electricity in middle school science. In: Lavonen, J., Juuti, K., Lampiselkä, J., Uitto, A., Hahl, K. (eds.) Science Education Research: Engaging Learners for a Sustainable Future: Proceedings of ESERA 2015 (Part 1: Strand 1: Learning Science: Conceptual Understanding), pp. 26–36, Helsinki, Finland (2016). ISBN 978-951-51-1541-6

    Google Scholar 

  4. Herrmann, F., Schmälzle, P.: Das elektrische Potential im Unterricht der Sekundarstufe I. MNU 37(8), 476–482 (1984)

    Google Scholar 

  5. Schumacher, M., Wiesner, H.: Erprobung des Potentialansatzes in der Elektrizitätslehre in Form einer Akzeptanzbefragungssequenz. In: DPG-Tagung (ed.) Vorträge Physikertagung, pp. 573–578 (1997)

    Google Scholar 

  6. Clement, J.J., Steinberg, M.S.: Step-wise evolution of mental models of electric circuits: a “learning-aloud” case study. J. Learn. Sci. 11(4), 389–452 (2002). https://doi.org/10.1207/S15327809JLS1104_1

    Article  Google Scholar 

  7. Gleixner, C.: Einleuchtende Elektrizitätslehre mit Potenzial. Dissertation, LMU München (1998)

    Google Scholar 

  8. Schwedes, H., Dudeck, W.G., Seibel, C.: Elektrizitätslehre mit Wassermodellen. Praxis der Naturwissenschaften–Physik 44(2) (1995)

    Google Scholar 

  9. Koller, D.: Einführung in die Elektrizitätslehre. Konzept Lehrer, München. https://www.didaktik.physik.uni-muenchen.de/archiv/inhalt_materialien/einf_elektrizitaet/index.html. Accessed 30 Sep 2017

  10. Burde, J.-P., Wilhelm, T.: Concept and empirical evaluation of a new curriculum to teach electricity with a focus on voltage. In: Ding, L., Traxler, A., Cao, Y. (eds.) 2017 Physics Education Research Conference Proceedings, Cincinnati (2017)

    Google Scholar 

  11. Rhöneck, C.: Vorstellungen vom elektrischen Stromkreis und zu den Begriffen Strom, Spannung und Widerstand. Naturwissenschaften im Unterricht-Physik 34(13), 10–14 (1986)

    Google Scholar 

  12. Burde, J.-P., Wilhelm, T.: Das Elektronengasmodel im Anfangsunterricht. Praxis der Naturwissenschaften-Physik 65(8), 18–24 (2016)

    Google Scholar 

  13. Burde, J.-P., Wilhelm, T.: Ein Unterrichtskonzept auf Basis des Elektronengasmodells. In: PhyDid B-Didaktik der Physik-Beiträge zur DPG-Frühjahrstagung, Hannover (2016)

    Google Scholar 

  14. diSessa, A.A.: Toward an epistemology of physics. Cogn. Instruct. 10(2–3), 105–225 (1993). https://doi.org/10.1080/07370008.1985.9649008

    Article  Google Scholar 

  15. diSessa, A.: A bird’s-eye view of the “pieces” vs “coherence” controversy (from the pieces “side of the fence”). In: Vosniadou, S. (ed.) International Handbook of Research on Conceptual Change, 2nd edn. Routledge, New York (2013)

    Google Scholar 

  16. Burde, J.-P., Wilhelm, T.: Hilft die Wasserkreislaufanalogie? In: Wilhelm, T. (ed.) Stolpersteine überwinden im Physikunterricht. Anregungen für fachgerech-te Elementarisierungen, pp. 100–104. Aulis Verlag, Seelze (2018)

    Google Scholar 

  17. Burde, J.-P.: Konzeption und Evaluation eines Unterrichtskonzepts zu einfachen Stromkreisen auf Basis des Elektronengasmodells. In: Studien zum Physik- und Chemielernen: Vol. 259. Logos Verlag, Berlin (2018)

    Google Scholar 

  18. Barab, S., Squire, K.: Design-based research: putting a stake in the ground. J. Learn. Sci. 13(1), 1–14 (2004)

    Article  Google Scholar 

  19. Ejersbo, L.R., Engelhardt, R., Frølunde, L., Hanghøj, T., Magnussen, R., Misfeldt, M.: Balancing product design and theoretical insights. In: Kelly, A.E., Lesh, R.A., Baek, J.Y. (eds.) Handbook of Design Research Methods in Education: Innovations in Science, Technology, Engineering, and Mathematics Learning and Teaching, pp. 149–163. Routledge (2008)

    Google Scholar 

  20. Schreiner, C., Sjøberg, S.: The Relevance of Science Education. Sowing the Seed of ROSE. Acta Didactica, Oslo (2004)

    Google Scholar 

  21. Urban-Woldron, H., Hopf, M.: Entwicklung eines Testinstruments zum Verständnis in der Elektrizitätslehre. Zeitschrift für Didaktik der Naturwissenschaften 18(1), 201–227 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Haagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haagen, C., Burde, JP., Hopf, M., Spatz, V., Wilhelm, T. (2019). Using the Electron Gas Model in Lower Secondary Schools—A Binational Design-Based Research Project. In: McLoughlin, E., van Kampen, P. (eds) Concepts, Strategies and Models to Enhance Physics Teaching and Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-18137-6_1

Download citation

Publish with us

Policies and ethics