Skip to main content

A Bundle Approach for SDPs with Exact Subgraph Constraints

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2019)

Abstract

The ‘exact subgraph’ approach was recently introduced as a hierarchical scheme to get increasingly tight semidefinite programming relaxations of several NP-hard graph optimization problems. Solving these relaxations is a computational challenge because of the potentially large number of violated subgraph constraints. We introduce a computational framework for these relaxations designed to cope with these difficulties. We suggest a partial Lagrangian dual, and exploit the fact that its evaluation decomposes into two independent subproblems. This opens the way to use the bundle method from non-smooth optimization to minimize the dual function. Computational experiments on the Max-Cut, stable set and coloring problem show the efficiency of this approach.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764759 and the Austrian Science Fund (FWF): I 3199-N31 and P 28008-N35. We thank three anonymous referees for their constructive comments which substantially helped to improve the presentation of our material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, E., Anjos, M.F., Rendl, F., Wiegele, A.: A hierarchy of subgraph projection-based semidefinite relaxations for some NP-hard graph optimization problems. INFOR Inf. Syst. Oper. Res. 53(1), 40–47 (2015)

    MathSciNet  Google Scholar 

  2. Biq Mac Library. http://biqmac.aau.at/. Accessed 18 Nov 2018

  3. Boros, E., Crama, Y., Hammer, P.L.: Upper-bounds for quadratic \(0\)-\(1\) maximization. Oper. Res. Lett. 9(2), 73–79 (1990)

    Article  MathSciNet  Google Scholar 

  4. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. Ser. A 62(3), 557–574 (1993)

    Article  MathSciNet  Google Scholar 

  5. DIMACS Implementation Challenges (1992). http://dimacs.rutgers.edu/Challenges/. Accessed 18 Nov 2018

  6. Frangioni, A., Gorgone, E.: Bundle methods for sum-functions with “easy” components: applications to multicommodity network design. Math. Program. 145(1), 133–161 (2014)

    Article  MathSciNet  Google Scholar 

  7. Gaar, E.: Efficient Implementation of SDP Relaxations for the Stable Set Problem. Ph.D. thesis, Alpen-Adria-Universität Klagenfurt (2018)

    Google Scholar 

  8. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  9. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics. Study and Research Texts, vol. 2. Springer, Berlin (1988)

    Book  Google Scholar 

  10. Guruswami, V., Khanna, S.: On the hardness of 4-coloring a 3-colorable graph. SIAM J. Discrete Math. 18(1), 30–40 (2004)

    Article  MathSciNet  Google Scholar 

  11. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  12. Khot, S.: Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring. In: 42nd IEEE Symposium on Foundations of Computer Science, Las Vegas, NV, pp. 600–609. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  13. Lasserre, J.B.: An Explicit exact SDP relaxation for nonlinear 0-1 programs. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3_23

    Chapter  Google Scholar 

  14. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)

    Article  MathSciNet  Google Scholar 

  15. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and \(0\)-\(1\) optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  MathSciNet  Google Scholar 

  16. MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 8.0. (2017). http://docs.mosek.com/8.0/toolbox/index.html

  17. Nguyen, T.H., Bui, T.: Graph coloring benchmark instances. https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html. Accessed 18 Nov 2018

  18. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. Ser. A 121(2), 307–335 (2010)

    Article  MathSciNet  Google Scholar 

  19. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  20. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MathSciNet  Google Scholar 

  21. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95(2), 189–217 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Gaar .

Editor information

Editors and Affiliations

A Tables

A Tables

Table 1. The running times for one Max-Cut and one stable set instance with different fixed sets of ESCs. The graphs of order \(n=100\) are from the Erdős-Rényi model.
Table 2. The deviation of the ESB to \(z_{mc}\) for several Max-Cut instances.
Table 3. The gap of the ESB to \(z_{mc}\) for two Max-Cut instances.
Table 4. Tighten \(\vartheta (G)\) towards \(\alpha (G)\) for several instances for 10 cycles.
Table 5. Maximum found projection distance of \(X_{I}\) to \({{\,\mathrm{STAB}\,}}^{2}(G_{I})\) for the computations of Table 4.
Table 6. Tighten \(\vartheta (G)\) towards \(\chi (G)\) for several instances for 10 cycles.
Table 7. Maximum found projection distance of \(X_{I}\) to \({{\,\mathrm{COL}\,}}(G_{I})\) for the computations of Table 6.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaar, E., Rendl, F. (2019). A Bundle Approach for SDPs with Exact Subgraph Constraints. In: Lodi, A., Nagarajan, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2019. Lecture Notes in Computer Science(), vol 11480. Springer, Cham. https://doi.org/10.1007/978-3-030-17953-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17953-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17952-6

  • Online ISBN: 978-3-030-17953-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics