Skip to main content

PROcket, an Efficient Algorithm to Predict Protein Ligand Binding Site

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11465))

  • 1111 Accesses

Abstract

To carry out functional annotation of proteins, the most crucial step is to identify the ligand binding site (LBS) information. Although several algorithms have been reported to identify the LBS, most have limited accuracy and efficiency while considering the number and type of geometrical and physio-chemical features used for such predictions. In this proposed work, a fast and accurate algorithm “PROcket” has been implemented and discussed. The algorithm uses grid-based approach to cluster the local residue neighbors that are present on the solvent accessible surface of proteins. Further with inclusion of selected physio-chemical properties and phylogenetically conserved residues, the algorithm enables accurate detection of the LBS. A comparative study with well-known tools; LIGSITE, LIGSITECS, PASS and CASTptool was performed to analyze the performance of our tool. A set of 48 ligand-bound protein structures from different families were used to compare the performance of the tools. The PROcket algorithm outperformed the existing methods in terms of quality and processing speed with 91% accuracy while considering top 3 rank pockets and 98% accuracy considering top 5 rank pockets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dutta, S., et al.: Data deposition and annotation at the worldwide protein data bank. Mol. Biotechnol. 42(1), 1–13 (2009)

    Article  MathSciNet  Google Scholar 

  2. Craig, I.R., Pfleger, C., Gohlke, H., Essex, J.W., Spiegel, K.: Pocket-space maps to identify novel binding-site conformations in proteins. J. Chem. Inf. Model. 51(10), 2666–2679 (2011)

    Article  Google Scholar 

  3. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser, I.A.: Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. 89(6), 2195–2199 (1992)

    Article  Google Scholar 

  4. Jones, S., Thornton, J.M.: Principles of protein-protein interactions. Proc. Natl. Acad. Sci. 93(1), 13–20 (1996)

    Article  Google Scholar 

  5. Heifetz, A., Katchalski-Katzir, E., Eisenstein, M.: Electrostatics in protein–protein docking. Protein Sci. 11(3), 571–587 (2002)

    Article  Google Scholar 

  6. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Struct. Funct. Bioinf. 47(4), 409–443 (2002)

    Article  Google Scholar 

  7. Levitt, D.G., Banaszak, L.J.: POCKET: a computer graphies method for identifying and displaying protein cavities and their surrounding amino acids. J. Mol. Graph. 10(4), 229–234 (1992)

    Article  Google Scholar 

  8. Delaney, J.S.: Finding and filling protein cavities using cellular logic operations. J. Mol. Graph. 10(3), 174–177 (1992)

    Article  Google Scholar 

  9. Del Carpio, C.A., Takahashi, Y., Sasaki, S.I.: A new approach to the automatic identification of candidates for ligand receptor sites in proteins: (I) search for pocket regions. J. Mol. Graph. 11(1), 23–29 (1993)

    Article  Google Scholar 

  10. Kleywegt, G.J., Jones, T.A.: Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. Sect. D: Biol. Crystallogr. 50(2), 178–185 (1994)

    Article  Google Scholar 

  11. Masuya, M., Doi, J.: Detection and geometric modeling of molecular surfaces and cavities using digital mathematical morphological operations. J. Mol. Graph. 13(6), 331–336 (1995)

    Article  Google Scholar 

  12. Peters, K.P., Fauck, J., Frömmel, C.: The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256(1), 201–213 (1996)

    Article  Google Scholar 

  13. Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 15(6), 359–363 (1997)

    Article  Google Scholar 

  14. Huang, B., Schroeder, M.: LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 6(1), 19 (2006)

    Article  Google Scholar 

  15. Ruppert, J., Welch, W., Jain, A.N.: Automatic identification and representation of protein binding sites for molecular docking. Protein Sci. 6(3), 524–533 (1997)

    Article  Google Scholar 

  16. Liang, J., Woodward, C., Edelsbrunner, H.: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 7(9), 1884–1897 (1998)

    Article  Google Scholar 

  17. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34(Suppl_2), W116–W118 (2006)

    Article  Google Scholar 

  18. Brady, G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14(4), 383–401 (2000)

    Article  Google Scholar 

  19. Venkatachalam, C.M., Jiang, X., Oldfield, T., Waldman, M.: LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21(4), 289–307 (2003)

    Article  Google Scholar 

  20. An, J., Totrov, M., Abagyan, R.: Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol. Cell. Proteomics 4(6), 752–761 (2005)

    Article  Google Scholar 

  21. Nayal, M., Honig, B.: On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins: Struct. Funct. Bioinf. 63(4), 892–906 (2006)

    Article  Google Scholar 

  22. Glaser, F., Morris, R.J., Najmanovich, R.J., Laskowski, R.A., Thornton, J.M.: A method for localizing ligand binding pockets in protein structures. PROTEINS: Struct. Funct. Bioinf. 62(2), 479–488 (2006)

    Article  Google Scholar 

  23. Kawabata, T., Go, N.: Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Proteins: Struct. Funct. Bioinf. 68(2), 516–529 (2007)

    Article  Google Scholar 

  24. Kim, D., Cho, C.H., Cho, Y., Ryu, J., Bhak, J., Kim, D.S.: Pocket extraction on proteins via the Voronoi diagram of spheres. J. Mol. Graph. Model. 26(7), 1104–1112 (2008)

    Article  Google Scholar 

  25. McGovern, S.L., Shoichet, B.K.: Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J. Med. Chem. 46(14), 2895–2907 (2003)

    Article  Google Scholar 

  26. Bhinge, A., Chakrabarti, P., Uthanumallian, K., Bajaj, K., Chakraborty, K., Varadarajan, R.: Accurate detection of protein: ligand binding sites using molecular dynamics simulations. Structure 12(11), 1989–1999 (2004)

    Article  Google Scholar 

  27. Yang, A.Y.C., Källblad, P., Mancera, R.L.: Molecular modelling prediction of ligand binding site flexibility. J. Comput. Aided Mol. Des. 18(4), 235–250 (2004)

    Article  Google Scholar 

  28. Murga, L.F., Ondrechen, M.J., Ringe, D.: Prediction of interaction sites from apo 3D structures when the holo conformation is different. Proteins: Struct. Funct. Bioinf. 72(3), 980–992 (2008)

    Article  Google Scholar 

  29. Foote, J., Raman, A.: A relation between the principal axes of inertia and ligand binding. Proc. Natl. Acad. Sci. 97(3), 978–983 (2000)

    Article  Google Scholar 

  30. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  MathSciNet  Google Scholar 

  31. Pettersen, E.F., et al.: UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritish Kumar Varadwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Semwal, R., Aier, I., Varadwaj, P.K., Antsiperov, S. (2019). PROcket, an Efficient Algorithm to Predict Protein Ligand Binding Site. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics