Skip to main content

Biology and Ecology of the Halophyte Laguncularia racemosa (L.) Gaertn. f.: A Review

Handbook of Halophytes

Abstract

Mangrove ecosystems are tropical and subtropical environments that are characterized by the interaction been the land and the sea. Laguncularia racemosa (white mangrove) is a monotypic pantropical and subtropical halophyte distributed in West Africa and the New World. In the New World, the zonation pattern in the mangal from the intertidal seaward fringe to higher elevation landward is Rhizophora mangle > L. racemosa > Avicennia germinans > Conocarpus erectus. Laguncularia racemosa is a halophyte that tolerates salinities up to 90 ppt. However, the optimal salinity range for mature stands of this species is from 15 to 20 ppt with water levels at or near the surface. Laguncularia racemosa secretes salt through glands on the leaf surface. Salt secretion allows roots to maintain low ion concentrations of salt in the xylem but allows other essential ions to move to the shoot system. Climate change has allowed L. racemosa to extend its range northward along the Atlantic coast of the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Angeles, G., Lόpez-Portillo, J., & Ortega-Escalona, F. (2002). Functional anatomy of secondary xylem of the roots of the mangrove Laguncularia racemosa L. Gaertn. (Combretaceae). Trees, 16, 338–345.

    Article  Google Scholar 

  • Barquil Colares, G., & Maciel Melo, V. M. (2013). Relating microbial community structure and environmental variables in mangrove sediments inside Rhizophora mangle L. habitats. Applied Soil Ecology, 64, 171–177.

    Article  Google Scholar 

  • Bertrand, R. (1983). Pollen from four common New World mangroves in Jamaica. Grana, 22, 147–151.

    Article  Google Scholar 

  • Bomfin de Oliveira A., Rizzo A.E., & da Conceição Guerreiro Couto, E. (2012). Benthic macrofauna associated with decomposition of leaves in a mangrove forest in Ilhéus, State of Bahia, Brazil. Journal of the Marine Biological Association of the United Kingdom, 380, 399–413.

    Google Scholar 

  • Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24, 187–201.

    Article  CAS  Google Scholar 

  • Bompy, F., Leque, G., Imbert, D., & Dulorme, M. (2014). Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three neotropical mangrove species. Plant and Soil, 380, 399–413.

    Article  CAS  Google Scholar 

  • Cardona-Olarte, P., Twilley, R. R., Krauss, K. W., & Rivera-Monroy, V. (2006). Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia, 569, 325–341.

    Article  Google Scholar 

  • Cavanaugh, K. C., Parker, J. D., Cook-Patton, S. C., Feller, I. C., Williams, A. P., & Kellner, J. R. (2015). Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology, 21, 1928–1938.

    Article  PubMed  Google Scholar 

  • Chequer, L., Pires Bitencourt, J. L., da Waite, C. C. C., Santos, E. S., Franco, D. C., & Alves, R., Crapez, M. A. C.. (2017). Response of mangrove propagules to the presence of oil-and hydrocarbon-degrading bacteria during an experimental oil spill. Latin American Journal of Aquatic Research, 45, 814–821.

    Google Scholar 

  • Coldren, G. A., & Proffitt, C. E. (2017). Mangrove seedling freeze tolerance depends on salt marsh presence, salinity, and age. Hydrobiologia, 803, 159–171.

    Article  CAS  Google Scholar 

  • da Lima Nadia, T., & Machado, I. C. (2014). Interpopulation variation in the sexual and pollination systems of two Combretaceae species in Brazilian mangroves. Aquatic Botany, 114, 35–41.

    Article  Google Scholar 

  • da Lima Nadia, T., Cerdeira Morellato, L. P., & Machado, I. C. (2012). Reproductive phenology of a northeast Brazilian mangrove community: Environmental and biotic constraints. Flora, 207, 682–692.

    Article  Google Scholar 

  • da Matta Portillo, J. T., Londe, V., & Araújo Moreira, F. W. (2017). Aboveground biomass and carbon stock are related with soil humidity at the Piraquê-Açu River, southeastern Brazil. Journal of Coastal Conservation, 21, 139–144.

    Article  Google Scholar 

  • da Souza, I., Bonomo, M. M., Morozesk, M., Rocha, L. D., Duarte, I. D., Furlan, L. M., Arrivabene, H. G., Monferran, M. V., Matsumoto, S. T., Dias Milanez, B. R., Wunderlin, D. A., & Fernandes, M. N. (2014). Adaptive plasticity of Laguncularia racemosa in response to different environmental conditions: Integrating chemical and biological data by chemometrics. Exotoxicology, 23, 335–348.

    Article  CAS  Google Scholar 

  • Davis, J. H., Jr. (1940). The ecology and geologic role of mangroves in Florida. (Papers from Tortugas Lab (Publication Carnegie Institute, No. 517), Vol. 32, pp. 303–341).

    Google Scholar 

  • de Oliveira, A. B., Rizzo, A. E., & da Couto, E. C. G. (2012). Assessing decomposition of leaves in a mangrove forest in Ilheus, State of Bahia, Brazil. Journal of the Marine Biological Association of the UK, 92, 1479–1487.

    Article  Google Scholar 

  • Delgado, P., Hensel, P. F., Jimenez, J. A., & Day, J. W. (2001). The importance of propagule establishment and physical factors in distributional patterns in a Costa Rican estuary. Aquatic Botany, 71, 157–178.

    Article  Google Scholar 

  • Ellis, W. L., Bowles, J. W., Erickson, A. A., Stafford, N., Bell, S. S., & Thomas, M. (2006). Alteration of the chemical composition of mangrove (Laguncularia racemosa) leaf litter fall by freeze damage. Estuarine, Coastal and Shelf Science, 68, 363–371.

    Article  CAS  Google Scholar 

  • Elster, C. (2000). Reasons for reforestation success and failure with three mangrove species in Colombia. Forest Ecology and Management, 131, 201–214.

    Article  Google Scholar 

  • Erickson, A. A., Bell, S. S., & Dawes, C. J. (2012). Associational resistance protects mangrove leaves from crab herbivory. Acta Oecologica (Montrouge), 41, 46–57.

    Article  Google Scholar 

  • Estrada, G. C. D., Gomes Soares, M. L., de Oliveira Chaves, F., & Cavalcanti, V. F. (2013). Analysis of the structural variability of mangrove forests through the physiographic types approach. Aquatic Botany, 111, 135–143.

    Article  Google Scholar 

  • Feller, I. C., Whigham, D. F., McKee, K. L., & Lovelock, C. E. (2003). Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 134, 4005–4414.

    Article  Google Scholar 

  • Freitas, H., Guedes, M. L. S., Smith, D. H., Oliveira, S. S., Santos, E. S., & da Silva, E. M. (2002). Characterization of mangrove plant community and associated sediment of Todos os Santo Bay, Bahia, Brazil. Aquatic Ecosystem Health, 5, 217–229.

    Article  Google Scholar 

  • Gerace Research Centre. The natural history of white mangrove, Laguncularia racemosa (Combretaceae): The forgotten mangrove. In B. J. Rathcke & W. K. Hayes (Eds.), Proceedings of the 11th symposium on the natural history of the Bahamas (pp. 43–53). San Salvador Island: Gerace Research Center.

    Google Scholar 

  • Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.

    Article  Google Scholar 

  • Landry, C. L. (2013). Changes in pollinator assemblages following hurricanes affect the mating systems of Laguncularia racemosa (Combretaceae) in Florida, U.S.A. Journal of Tropical Ecology, 29, 209–216.

    Article  Google Scholar 

  • Landry, C. L., Rathcke, B. J., & Kass, L. B. (2009). Distribution and androdioecious and hermaphroditic populations of the mangrove Laguncularia racemosa (Combretaceae) in Florida and the Bahamas. Journal of Tropical Ecology, 25, 75–83.

    Article  Google Scholar 

  • Lira-Medeiros, C. F., Parisod, C., Avancini-Fernandes, R., Souza Mata, C., Aries Cardoso, M., & Ferreira, P. C. G. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environments. PLoS One, 5, 1–8.

    Article  CAS  Google Scholar 

  • Lόpez-Medellín, X., & Ezcurra, F. (2012). The productivity of mangroves in northwestern Mexico: A meta-analysis of current data. Journal of Coastal Conservation, 13, 399–403.

    Article  Google Scholar 

  • Lόpez-Portillo, J., Ewers, F. W., Méndez-Alonzo, R., Paredes-Lόpez, C. L., Angeles, G., Alarcόn Jiménez, A. L., Lara-Domínguez, A. L., & del Torres Barrera, M. C. (2014). Dynamic control of osmolality and ionic composition of xylem sap in two mangrove species. Plant soil. American Journal of Botany, 101, 1013–1022.

    Article  Google Scholar 

  • Machado, W., Gueiros, B. B., Lisboa-Filho, S. D., & Lacerda, L. D. (2005). Trace metals in mangrove seedlings: Role of iron plaque formation. Wetlands Ecology and Management, 13, 199–206.

    Article  CAS  Google Scholar 

  • McKee, K. L. (1995a). Mangrove species distribution and propagule predation in Belize: An exception of the dominance-predation hypothesis. Biotropica, 27, 334–345.

    Article  Google Scholar 

  • McKee, K. L. (1995b). Seedling recruitment patterns in a Belizean mangrove forest: Effects of establishment ability and physical factors. Oecologia, 101, 448–460.

    Article  PubMed  Google Scholar 

  • Medeiros, T. C. C., & Sampio, E. V. S. B. (2013). Leaf and flower formation in shoot tips of mangrove trees in Pernambuco, Brazil. Wetlands Ecology and Management, 21, 209–217.

    Article  Google Scholar 

  • Medina, E., Fernandez, W., & Barbosa, F. (2015). Element uptake accumulation and resorption in leaves of mangrove species with different mechanisms of salt regulation. Web Ecology, 15, 3–13.

    Article  Google Scholar 

  • Méndez-Alonzo, R., Lόpez-Portillo, J., Moctezuma, B., Bartlett, M. K., & Sack, L. (2016). Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. Tree Physiology, 36, 1562–1572.

    Article  PubMed  CAS  Google Scholar 

  • Middleton, B. A., & McKee, K. L. (2001). Degradation of mangrove tissues and implications for peat formation in Belizean inland forests. Journal of Ecology, 89, 818–828.

    Article  Google Scholar 

  • Moroyoqui-Rojo, L., Flores-Verdugo, F. J., Hernández -Carmona, G., Casas-Valdez, M., Cervantes-Duarte, R., & Nava-Sánchez, E. H. (2012). Nutrient removal using two species of mangrove (Rhizophora mangle and Laguncularia racemosa) in experimental shrimp (Litopenaeus vannamei) culture ponds. Ciencias Marinas, 38, 333–346.

    Article  CAS  Google Scholar 

  • Osland, M. J., Enwright, N., Day, R. H., & Doyle, T. W. (2013). Winter climate change and coastal wetland foundation species: Salt marshes vs mangrove forest in the southeastern United States. Global Change Biology, 1-13.

    Google Scholar 

  • Pezeshki, S. R., DeLaune, R. D., & Meeder, J. F. (1997). Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environmental and Experimental Botany, 37, 161–171.

    Article  CAS  Google Scholar 

  • Rey, J. (1994). Effects of neighbors on growth and mortality of mangrove seedlings in Florida, U.S.A. Wetlands, 14, 308–315.

    Article  Google Scholar 

  • Schmiegelow, J. M. M., & Flores Gianesella, S. M. (2014). Absence of zonation in a mangrove forest in southeastern Brazil. Brazilian Journal of Oceangraphy, 62, 117–131.

    Article  Google Scholar 

  • Sherman, R. E., Fahey, T. J., & Howarth, R. W. (1998). Soil-plant interactions in a neotropical mangrove forest: Iron, phosphorus and sulfur dynamics. Oecologia, 115, 553–563.

    Article  PubMed  Google Scholar 

  • Sobrado (2004). Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. Trees, 18, 422–427.

    Google Scholar 

  • Sousa, W. P., Kennedy, P. G., Mitchell, B. J., & Ordόñez, B. M. (2007). Supply-side ecology in mangroves: Do propagule dispersal and seedling establishment explain forest structure? Ecological Monographs, 77, 53–76.

    Article  Google Scholar 

  • Sperry, J. S., Tyree, M. T., & Donnelly, J. R. (1988). Vulnerability of xylem embolism in a mangrove vs an inland species of Rhizophoraceae. Physiologia Plantarum, 74, 276–283.

    Article  Google Scholar 

  • Stuart, S. A., Choat, B., Martin, K. C., Holbrook, N. M., & Ball, M. C. (2007). The role of freezing in setting the latitudinal limits of mangrove forests. The New Phytologist, 173, 576–583.

    Article  CAS  PubMed  Google Scholar 

  • Suárez, N. (2003). Leaf longevity, construction, and maintenance costs of three mangrove species under field conditions. Photosynthetica, 41, 373–381.

    Article  Google Scholar 

  • Tomlinson, P. B. (1994). The botany of mangroves. New York: Cambridge University Press.

    Google Scholar 

  • Williams, A. A., Eastman, S. F., Eash-Loucks, W. E., Kimball, M. E., Lehmann, M. L., & Parker, J. D. (2014). Record northernmost endemic mangrove on the United States Atlantic coast with a note on latitudinal migration. Southeastern Naturalist, 13, 56–63.

    Article  Google Scholar 

  • Woodroffe, C. D. (1982). Geomorphology and development of mangrove swamps, Grand Cayman Island, West Indies. Bulletin of Marine Science, 32, 381–398.

    Google Scholar 

  • Wooller, M., Smallwood, R., Jacobson, M., & Fogel, M. (2003). Carbon and nitrogen stable isotopic variation in Laguncularia racemosa L. (white mangrove) from Florida and Belize: Implications for tropic level studies. Hydrobiologia, 499, 13–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Glennis Lonard and Dr. David Lonard for their technical assistance. Library support services at Rice University were helpful in obtaining pertinent literature. We thank Drs. Michael Osland, Lee Kass, and Robert Hunt for their courtesy of providing images of Laguncularia racemosa. Dr. Hudson DeYoe provided images of the leaf and inflorescence of this species from Ft. Lauderdale, Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert I. Lonard .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lonard, R.I., Judd, F.W., DeYoe, H.R., Stalter, R. (2021). Biology and Ecology of the Halophyte Laguncularia racemosa (L.) Gaertn. f.: A Review. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_71-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_71-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    (L.) Gaertn. f.: A Review
    Published:
    29 January 2021

    DOI: https://doi.org/10.1007/978-3-030-17854-3_71-3

  2. (L.) Gaertn. f.: A Review
    Published:
    10 December 2020

    DOI: https://doi.org/10.1007/978-3-030-17854-3_71-2

  3. Original

    (L.) Gaertn. f.: A Review
    Published:
    07 September 2020

    DOI: https://doi.org/10.1007/978-3-030-17854-3_71-1