Skip to main content

Halophytes: A Glimpse of Indian Sundarbans – A World Heritage Site, Its Existing Status, and Sustainability

Handbook of Halophytes

Abstract

Halophytes are a group of plant communities, trees or shrubs, that are a typical succession in tropical and subtropical coastal vegetation characteristic across the globe. A divergent group of plants, these possess somewhat similar morphoanatomical–biochemical features by which they thrive under a moderate- to high-saline microclimate. With incredible economic and ecological importance, these vast vegetational resources serve as a coastline defender against tropical sea surges. Presently, as the result of demographic exploitation and rapid climate change, the sustainability of this essential vegetation is being threatened all over the world.

Sundarbans is a World Heritage mangrove swamp with the largest floral diversity occupying a single delta in the Indian subcontinent: two thirds of the swamp is in Bangladesh and the rest is in West Bengal, India. Some geomorphological features of this delta cause differential salinity levels to persist in Sundarbans. The Indian part of this delta suffers much in this regard. The salinity level of the substrate produces a direct influence on the vegetation pattern. Individual plant species possess differential salt management ability. The lesser adaptability can be assessed through a series of micromorphological studies, assessment of physiological/biochemical behavior, and genetic configuration. These studies have revealed that some of the important community members, such as Aegialitis rotundifolia, Heritiera fomes, Nypa fruticans, Xylocarpus granatum, and Xylocarpus mekongensis, are very greatly distressed in Indian Sundarbans. Consolidated experimental evidence could be utilized to develop an effective conservation technique to uphold the biodiversity and ecological homeostasis in the western part of Sundarbans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeysinghe, P. D., Triest, L., De Greef, B., Koedam, N., & Hettiarachi, S. (2000). Genetic and geographic variation of the mangrove tree Bruguiera in Sri Lanka. Aquatic Botany, 67(2), 131–141.

    Google Scholar 

  • Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369–374.

    CAS  Google Scholar 

  • Adeel, Z., & King, C. (2002). Conserving our coastal environment. Tokyo: United Nations University. ISBN 92-808-8004-7.

    Google Scholar 

  • Alim, A. (1979). Instruction manual for plantations in coastal areas. In K. L. White (Ed.), Research considerations in coastal afforestation (pp. 65–75). Chittagong: UNDP/FAO Project BDG/72/005, Food and Agricultural Organization. Forest Research Institute.

    Google Scholar 

  • Alongi, D. M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29(3), 331–349.

    Google Scholar 

  • Alongi, D. (2009). The energetics of mangrove forests. Dordrecht: Springer Science & Business Media.

    Google Scholar 

  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Askari, N., Abadi, M. M., & Baghizadeh, A. (2011). ISSR markers for assessing DNA polymorphism and genetic characterization of cattle, goat and sheep populations. Iranian Journal of Biotechnology, 9, 222–229.

    CAS  Google Scholar 

  • Ayala, F. J., & Kiger, J. A. (1984). Modern genetics (2nd ed.). Menlo Park: Benjamin/Cummings.

    Google Scholar 

  • Aziz, I., & Khan, M. A. (2001). Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquatic Botany, 70(3), 259–268.

    CAS  Google Scholar 

  • Banarjee, L. K. (1999). Mangroves of Orissa coast and their ecology (p. 41). Dehradun: Bishen Singh Mahendra Pal Singh.

    Google Scholar 

  • Barbier, E. B. (2016). The protective service of mangrove ecosystems: a review of valuation methods. Marine Pollution Bulletin, 109(2), 676–681.

    CAS  PubMed  Google Scholar 

  • Barik, J., & Chowdhury, S. (2014). True mangrove species of Sundarbans Delta, West Bengal, eastern India. Check List, 10(2), 329–334.

    Google Scholar 

  • Chaffey, D. R., Miller, F. R., & Sandon, J. H. (1985). A forest inventory of Sundarbans, Bangladesh: Main report. London: Overseas Development Administration.

    Google Scholar 

  • Chanda, S., & Datta, S. C. (1986). Prospects and problems of a mangrove ecosystem in western Sundarbans (India). Transactions of the Bose Research Institute, 49, 47–57.

    Google Scholar 

  • Chaudhuri, A. B., & Choudhury, A. (1994a). Mangroves of the Sundarbans. Volume 1: India. Bangkok: IUCN Wetlands Program.

    Google Scholar 

  • Chaudhuri, A. B., & Choudhury, A. (1994b). Mangroves of the Sundarbans. Volume 1: India. Check List, 10(2), 329–334.

    Google Scholar 

  • Chen, J. M., Liu, X., Wang, J. Y., Robert, G. W., & Wang, Q. F. (2005). Genetic variation within the endangered quillwort Isoetes hypsophila (Isoetaceae) in China as evidenced by ISSR analysis. Aquatic Botany, 82(2), 89–98.

    CAS  Google Scholar 

  • Chen, S. B., Ding, W. Y., Qiu, J. B., Wang, G. Y., Zhou, Z. M., Chen, J. F., Ai, W. M., Wang, C. Y., & Xie, Q. L. (2010). The genetic diversity of the mangrove Kandelia obovata in China revealed by ISSR analysis. Pakistan Journal of Botany, 42, 3755–3764.

    CAS  Google Scholar 

  • Choudhury, J. K. (1996). Mangrove forest management. Mangrove rehabilitation and management project in Sulawesi, p. 297.

    Google Scholar 

  • Clough, B. F. (1994). Climatic impacts on mangrove ecosystems. In S. V. Deshmukh & V. Balaji (Eds.), Conservation of mangrove genetic resources: a training manual (pp. 39–43). Madras: ITTO-CRSARD Project. MSSRF.

    Google Scholar 

  • Cowan, I. R. (1982). Regulation of water use in relation to carbon gain in higher plants. In Physiological plant ecology (Vol. II, pp. 589–613). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Curtis, S. J. (1993). Working plan for the forests of the Sundarbans Division for the period from 1st April 1931 to 31st March 1961 (p. 175). Calcutta: Bengal Government Press.

    Google Scholar 

  • Das, S. (1999). An adaptive feature of some mangroves of Sundarbans, West Bengal. Journal of Plant Biology, 42(2), 109–116.

    Google Scholar 

  • Das, S., & Ghose, M. (1993). Morphology of stomata and leaf hairs of some halophytes from Sundarbans, West Bengal. Phytomorphology, 43(1–2), 59–70.

    Google Scholar 

  • Das, S., & Ghose, M. (1996). Anatomy of leaves of some mangroves and their associates of Sundarbans, West Bengal. Phytomorphology, 46(2), 130–150.

    Google Scholar 

  • Dasgupta, N., Sengupta, C., & Das, S. (2014). Role of secondary metabolites and radical scavenging aptitude for better adaptability of mangroves in varying salinity of Sundarbans, India. Annals of Tropical Research, 36, 1–21.

    Google Scholar 

  • Dasgupta, N., Nandy, P., Sengupta, C., & Das, S. (2015). RAPD and ISSR marker mediated genetic polymorphism of two mangroves Bruguiera gymnorhiza and Heritiera fomes from Indian Sundarbans in relation to their sustainability. Physiology and Molecular Biology of Plants, 21(3), 375–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta, N., Nandy, P., Sengupta, C., & Das, S. (2018). Genetic variation in relation to adaptability of three mangrove species from the Indian Sundarbans assessed with RAPD and ISSR markers. Journal of Forestry Research, 29(2), 301–310.

    CAS  Google Scholar 

  • Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., & Dahdouh-Guebas, F. (2007). A world without mangroves? Science, 317, 41–42.

    CAS  PubMed  Google Scholar 

  • Fagen, L. I., & Nianhe, X. I. A. (2005). Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin of Academia Sinica, 46, 512–521.

    Google Scholar 

  • Fahn, A., & Shimony, C. (1977). Development of the glandular and non-glandular leaf hairs of Avicennia marina (Forsskål) Vierh. Botanical Journal of the Linnean Society, 74(1), 37–46.

    Google Scholar 

  • FAO (Food and Agricultural Organization, United Nations). (2007). The world’s mangroves 1980–2005 (FAO forestry paper 153). Rome: FAO.

    Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.

    CAS  PubMed  Google Scholar 

  • Forest Survey of India (FSI). (2009). State forest report 2009. New Delhi: Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Forest Survey of India (FSI). (2017). State forest report 2017. New Delhi: Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89(2), 237–250.

    Google Scholar 

  • Giri, C., Zhu, Z., Tieszen, L. L., Singh, A., Gillette, S., & Kelmelis, J. A. (2008). Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. Journal of Biogeography, 35(3), 519–528.

    Google Scholar 

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Mesak, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using Earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159.

    Google Scholar 

  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology, 31(1), 149–190.

    CAS  Google Scholar 

  • Grigore, M. N. (2008). Introducere in Halofitologie. Elemente de anatomie integrative. Iasi: PIM.

    Google Scholar 

  • Haq, S., Karim, Z., Asaduzzaman, M., & Mahtab, F. (1999). Vulnerability and adaptation to climate change for Bangladesh. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Hasegawa, T., Koike, I., & Mukai, H. (2000). Release of dissolved organic nitrogen by size-fractionated natural planktonic assemblages in coastal waters. Marine Ecology Progress Series, 198, 43–49.

    CAS  Google Scholar 

  • Hogarth, P. J. (2007). The biology of mangroves and seagrasses. Oxford, UK: Oxford University Press.

    Google Scholar 

  • IUCN (1989). A Directory of Asian Wetlands. ISBN: 2-88032-984-1. https://portals.iucn.org/library/node/5933

  • Jaccard, P. (1998). Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles, 44, 223–270.

    Google Scholar 

  • Karim, A. (1994). Vegetation. In Z. Hussain & G. Acharya (Eds.), Mangroves of Sundarbans, vol 2: Bangladesh. Bangkok: IUCN, The World Conservation Union.

    Google Scholar 

  • Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.

    Google Scholar 

  • Kathiresan, K., Kannan, L. (1985). Photosynthetic productivity in species of Rhizophora. In The mangroves. Proc. Natl. Symp. Biol. Util. Cons., Mangroves Shivaji University, Kolhapur, pp. 262–265.

    Google Scholar 

  • Kavitha, P., & Rao, J. V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environmental Toxicology and Pharmacology, 26(2), 192–198.

    CAS  PubMed  Google Scholar 

  • Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49(4), 725.

    Google Scholar 

  • Lakshmi, M., Rajalakshmi, S., Parani, M., Anuratha, C. S., & Parida, A. (1997). Molecular phylogeny of mangroves I. Use of molecular markers in assessing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius Linn. (Acanthaceae). Theoretical and Applied Genetics, 94(8), 1121–1127.

    CAS  Google Scholar 

  • Lakshmi, M., Parani, M., & Parida, A. (2002). Molecular phylogeny of mangroves IX: molecular marker assisted intra-specific variation and species relationships in the Indian mangrove tribe Rhizophoreae. Aquatic Botany, 74(3), 201–217.

    CAS  Google Scholar 

  • Lewontin, R. C. (1972). The apportionment of human diversity. Evol Biol, 6, 381–398.

    Google Scholar 

  • Lewis, M., Pryor, R., & Wilking, L. (2011). Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. Environmental Pollution, 159(10), 2328–2346.

    CAS  PubMed  Google Scholar 

  • Li, H. S., & Chen, G. Z. (2004). Genetic diversity of Sonneratia alba in China detected by inter-simple sequence repeats (ISSR) analysis. Acta Botanica Sinica, 46(5), 515–521.

    CAS  Google Scholar 

  • Mandal, R. N., & Naskar, K. R. (2008). Diversity and classification of Indian mangroves: a review. Tropical Ecology, 49(2), 131–146.

    Google Scholar 

  • Mehta, P. A., Sivaprakash, K., Parani, M., Venkataraman, G., & Parida, A. K. (2005). Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theoretical and Applied Genetics, 110(3), 416–424.

    CAS  PubMed  Google Scholar 

  • Nandy Datta, P., & Ghose, M. (2003). Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Botanica Croatica, 62(1), 37–45.

    Google Scholar 

  • Nandy Datta, P., Das, S., Ghose, M., & Spooner Hart, R. (2007). Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecology and Management, 15, 347–357.

    Google Scholar 

  • Nandy, P., & Ghose, M. (2001). Photosynthesis and water-use efficiency of some mangroves from Sundarbans, India. Journal of Plant Biology, 44(4), 213–219.

    Google Scholar 

  • Nandy, P., & Ghose, M. (2005). Photosynthesis and water-use characteristics in Indian mangroves. Journal of Plant Biology, 48(2), 245–252.

    Google Scholar 

  • Nandy, P., Das, S., Ghose, M., & Spooner-Hart, R. (2007). Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecology and Management, 15(4), 347–357.

    CAS  Google Scholar 

  • Naskar, K. R., & Guha Bakshi, D. N. (1983). Brief review on some less familiar plants of the Sundarbans. Journal of Economic and Taxonomic Botany, 4(3), 699–712.

    Google Scholar 

  • Naskar, K., & Mandal, R. (1999). Ecology and biodiversity of Indian mangroves (Vol. 1, pp. 386–388). New Delhi: Daya Books.

    Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci, 70(12), 3321–3323.

    Google Scholar 

  • Osmond, C. B., Lüttge, U., West, K. R., Pallaghy, C. K., & Shacher-Hill, B. (1969). Ion absorption in Atriplex leaf tissue II. Secretion of ions to epidermal bladders. Australian Journal of Biological Sciences, 22(4), 797–814.

    CAS  Google Scholar 

  • Parani, M., Lakshmi, M., Ziegenhagen, B., Fladung, M., Senthilkumar, P., & Parida, A. (2000). Molecular phylogeny of mangroves VII. PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species. Theoretical and Applied Genetics, 100(3–4), 454–460.

    CAS  Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324–349.

    CAS  PubMed  Google Scholar 

  • Parida, A., Das, A. B., & Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45(1), 28–36.

    CAS  Google Scholar 

  • Pawar, U. R., Baskaran, J., Ajithkumar, I. P., & Panneerselvam, R. (2013). Genetic variation between Xylocarpus species (Meliaceae) as revealed by random amplified polymorphic DNA (RAPD) markers. Emirates Journal of Food and Agriculture, 25(8), 597–604.

    Google Scholar 

  • Peixoto, R., Chaer, G. M., Carmo, F. L., Araujo, F. V., Paes, A., Volpon, G. A., Santiago, A., & Rosado, S. (2011). Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment. Antonie Van Leeuwenhoek, 99(2), 341–354.

    CAS  PubMed  Google Scholar 

  • Penha-Lopes, G., Torres, P., Cannicci, S., Narciso, L., & Paula, J. (2011). Monitoring anthropogenic sewage pollution on mangrove creeks in southern Mozambique: a test of Palaemon concinnus Dana, 1852 (Palaemonidae) as a biological indicator. Environmental Pollution, 159(2), 636–645.

    CAS  PubMed  Google Scholar 

  • Rabie, G. H., & Almadini, A. M. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4(3), 210–222.

    CAS  Google Scholar 

  • Rohlf, F. J. (2000). NTSYS-PC, numerical taxonomy and multivariate analysis system version 2.1. New York: Exeter Software.

    Google Scholar 

  • Schaal, B. A., Leverich, W. J., & Rogstad, S. H. (1991). Comparison of methods for assessing genetic variation in plant conservation biology. In Genetics and conservation of rare plants (pp. 123–134). New York: Oxford University Press.

    Google Scholar 

  • Schulze, E. D., Caldwell, M. M., Canadell, J., Mooney, H. A., Jackson, R. B., Parson, D., Sala, O.E., Trimborn, P. (1998). Downward flux of water through roots (i.e., inverse hydraulic lift) in dry Kalahari sands. Oecologia (Berl) 115(4), 460462.

    Google Scholar 

  • Searson, M. J., Thomas, D. S., Montagu, K. D., & Conroy, J. P. (2004). Leaf water use efficiency differs between Eucalyptus seedlings from contrasting rainfall environments. Functional Plant Biology, 31(5), 441–450.

    PubMed  Google Scholar 

  • Sefton, C. A., Montagu, K., Atwell, B. J., & Conroy, J. P. (2002). Anatomical variation in juvenile eucalypt leaves accounts for differences in specific leaf area and CO2 assimilation rates. Australian Journal of Botany, 50(3), 301–310.

    Google Scholar 

  • Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. The principles and practice of numerical classification. San Francisco: W.H. Freeman.

    Google Scholar 

  • Spalding, M. D., Blasco, E., & Field, C. D. (1997). World mangrove atlas. Okinawa: The International Society for Mangrove Ecosystems.

    Google Scholar 

  • Spiers, A. G. (1999). Review of international/continental wetland resources. In Global review of wetland resources and priorities for wetland inventory (pp. 63–104). Canberra: Supervising Scientist Report.

    Google Scholar 

  • Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., & Dubinsky, Z. (2000). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorhiza. Aquatic Botany, 68(1), 15–28.

    CAS  Google Scholar 

  • Tomlinson, P. B. (1986). The botany of mangroves. London: Cambridge University Press.

    Google Scholar 

  • Upadhyay, V. P., Ranjan, R., & Singh, J. S. (2002). The human mangrove conflicts–the way out. Current Science, 83(11), 1328–1336.

    Google Scholar 

  • Waisel, Y. (1972). Biology of halophytes. New York: Academic.

    Google Scholar 

  • Walter, H. (1971). Ecology of tropical and subtropical vegetation (p. 539). New York: Van Nostrand.

    Google Scholar 

  • Wilson, P. J., Thompson, K. E. N., & Hodgson, J. G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143(1), 155–162.

    Google Scholar 

  • Yan, L., & Guizhu, C. (2007). Physiological adaptability of three mangrove species to salt stress. Acta Ecologica Sinica, 27(6), 2208–2214.

    Google Scholar 

  • Ye, Y., Tam, N. F., Wong, Y. S., & Lu, C. Y. (2003). Growth and physiological responses of two mangrove species (Bruguiera gymnorhiza and Kandelia candel) to water logging. Environmental and Experimental Botany, 49(3), 209–221.

    Google Scholar 

  • Yeh, F. C., Yang, R. C., Boyle, T. B., Ye, Z. H., & Mao, J. X. (1997). POPGENE, the user-friendly shareware for population genetic analysis (p. 10). Alberta: Molecular Biology and Biotechnology Centre, University of Alberta.

    Google Scholar 

  • Zimmermann, M. H. (1983). Plant structures: xylem structure and the ascent of sap. Science, 222, 500–501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauren Das .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, S., Dasgupta, N., Hazra, A. (2020). Halophytes: A Glimpse of Indian Sundarbans – A World Heritage Site, Its Existing Status, and Sustainability. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Halophytes: A Glimpse of Indian Sundarbans – A World Heritage Site, Its Existing Status, and Sustainability
    Published:
    03 November 2020

    DOI: https://doi.org/10.1007/978-3-030-17854-3_6-2

  2. Original

    Halophytes: A Glimpse of Indian Sundarbans – A World Heritage Site, Its Existing Status, and Sustainability
    Published:
    23 August 2020

    DOI: https://doi.org/10.1007/978-3-030-17854-3_6-1