Skip to main content

Novel Therapies for Small Cell Lung Cancer

  • Chapter
  • First Online:
Targeted Therapies for Lung Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 686 Accesses

Abstract

Small cell lung cancer (SCLC) is an aggressive illness with an overall poor prognosis. A large number of therapeutics have been utilized in the past without much success. Cisplatin (or carboplatin) and etoposide are the hallmarks of the therapy. A large number of current novel therapeutics are targeting the immune system, and based on the recent results, nivolumab and atezolizumab have been approved in certain settings. Targeting with antibody conjugates and bispecifics are coming to fruition. Also, downstream targeting with transcription inhibitors such as EZH2 inhibitors, aurora kinase inhibitors, mitochondrial inhibitors of BCL-2, DLL3/DLL4, and stem cell signaling are currently being tested in the clinics. With novel therapies and immune therapies, there is hope that the bleak overall survival for SCLC will be improved considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Govindan R, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24(28):4539–44.

    Article  PubMed  Google Scholar 

  2. Sabari JK, et al. Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol. 2017;14(9):549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lara PN Jr, et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. J Clin Oncol. 2009;27(15):2530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Faria AL, et al. Topotecan in second-line treatment of small-cell lung cancer--how it works in our daily clinical practice? Curr Drug Saf. 2010;5(2):114–7.

    Article  CAS  PubMed  Google Scholar 

  5. von Pawel J. The role of topotecan in treating small cell lung cancer: second-line treatment. Lung Cancer. 2003;41(Suppl 4):S3–8.

    Article  Google Scholar 

  6. George J, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wistuba AFG II, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001;28(2 Suppl 4):3–13.

    Article  CAS  PubMed  Google Scholar 

  8. Peifer M, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rudin CM, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics. 2012;44(10):1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med. 2003;349(16):1543–54.

    Article  CAS  PubMed  Google Scholar 

  11. Graus F, et al. Anti-Hu antibodies in patients with small-cell lung cancer: association with complete response to therapy and improved survival. J Clin Oncol. 1997;15(8):2866–72.

    Article  CAS  PubMed  Google Scholar 

  12. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antonia SJ, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–95.

    Article  CAS  PubMed  Google Scholar 

  14. Reck M, Heigener D, Reinmuth N. Immunotherapy for small-cell lung cancer: emerging evidence. Future Oncol. 2016;12(7):931–43.

    Article  CAS  PubMed  Google Scholar 

  15. Gettinger S, et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2016;34(25):2980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garon EB. Current Perspectives in Immunotherapy for Non-Small Cell Lung Cancer. Semin Oncol. 2015;42(Suppl 2):S11–8.

    Article  CAS  PubMed  Google Scholar 

  17. Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoos A, et al. Improved Endpoints for Cancer Immunotherapy Trials. JNCI: J Natl Cancer Inst. 2010;102(18):1388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reck M, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  21. Reck M, et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J Clin Oncol. 2016;34(31):3740–8.

    Article  CAS  PubMed  Google Scholar 

  22. Curran MA, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 2010;107(9):4275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ready N, et al. Third-line nivolumab monotherapy in recurrent small cell lung cancer: checkmate 032. J Thorac Oncol. 2019;14(2):237–244.

    Google Scholar 

  24. Ott PA, et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase ib KEYNOTE-028 study. J Clin Oncol. 2017;35(34):3823–9.

    Article  CAS  PubMed  Google Scholar 

  25. Gadgeel SM, et al. Phase II study of maintenance pembrolizumab in patients with extensive-stage small cell lung cancer (SCLC). J Thorac Oncol. 2018;13(9):1393–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Horn L, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 2018;379:2220–2229.

    Article  CAS  PubMed  Google Scholar 

  27. Freeman-Keller M, Goldman J, Gray J. Vaccine immunotherapy in lung cancer: clinical experience and future directions. Pharmacol Ther. 2015;153:1–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ehrlich D, et al. Intratumoral anti-HuD immunotoxin therapy for small cell lung cancer and neuroblastoma. J Hematol Oncol. 2014;7:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Krug LM, et al. Immunization with N-propionyl polysialic acid-KLH conjugate in patients with small cell lung cancer is safe and induces IgM antibodies reactive with SCLC cells and bactericidal against group B meningococci. Cancer Immunol Immunother. 2012;61(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  30. Giaccone G, et al. Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). J Clin Oncol. 2005;23(28):6854–64.

    Article  CAS  PubMed  Google Scholar 

  31. Bottomley A, et al. Symptom and quality of life results of an international randomised phase III study of adjuvant vaccination with Bec2/BCG in responding patients with limited disease small-cell lung cancer. Eur J Cancer. 2008;44(15):2178–84.

    Article  CAS  PubMed  Google Scholar 

  32. Weiskopf K, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest. 2016;126(7):2610–20.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ding X, et al. Cellular immunotherapy as maintenance therapy prolongs the survival of the patients with small cell lung cancer. J Transl Med. 2015;13:158.

    Google Scholar 

  34. Bouchard H, Viskov C, Garcia-Echeverria C. Antibody-drug conjugates-A new wave of cancer drugs. Bioorg Med Chem Lett. 2014;24(23):5357–63.

    Article  CAS  PubMed  Google Scholar 

  35. Rudin CM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18(1):42–51.

    Article  CAS  PubMed  Google Scholar 

  36. Gray JE, et al. Phase 2 study of sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate (ADC), in patients with pretreated metastatic small-cell lung cancer (mSCLC). Cancer Res. 2017;23(19):5711–5719.

    Google Scholar 

  37. Shah MH, et al. Phase I study of IMGN901, a CD56-targeting antibody-drug conjugate, in patients with CD56-positive solid tumors. Invest New Drugs. 2016;34(3):290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perez JMT, et al. Efficacy and safety of lurbinectedin (PM1183) in small cell lung cancer (SCLC): results from a phase 2 study. J Clin Oncol. 2018;36(15). Abstract 8570.

    Google Scholar 

  39. Farago AF, et al. ATLANTIS: global, randomized phase III study of lurbinectedin (L) with doxorubicin (DOX) vs. CAV or topotecan (T) in small-cell lung cancer after platinum therapy. J Clin Oncol. 2018;36(15). Abstract TPS8587.

    Article  Google Scholar 

  40. Lucchi M, et al. Small cell lung carcinoma (SCLC): the angiogenic phenomenon. Eur J Cardiothorac Surg. 2002;21(6):1105–10.

    Article  PubMed  Google Scholar 

  41. Salven P, et al. High pre-treatment serum level of vascular endothelial growth factor (VEGF) is associated with poor outcome in small-cell lung cancer. Int J Cancer. 1998;79(2):144–6.

    Article  CAS  PubMed  Google Scholar 

  42. Ustuner Z, et al. Prognostic and predictive value of vascular endothelial growth factor and its soluble receptors, VEGFR-1 and VEGFR-2 levels in the sera of small cell lung cancer patients. Med Oncol. 2008;25(4):394–9.

    Article  PubMed  Google Scholar 

  43. Li Q, et al. Angiogenesis inhibitors for the treatment of small cell lung cancer (SCLC) A meta-analysis of 7 randomized controlled trials. Medicine. 2017;96(13). e6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res. 2016;5(1):16–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pore M, et al. Cancer stem cells, epithelial to mesenchymal markers, and circulating tumor cells in small cell lung cancer. Clin Lung Cancer. 2016;17(6):535–42.

    Article  PubMed  Google Scholar 

  46. Koren A, Motaln H, Cufer T. Lung cancer stem cells: a biological and clinical perspective. Cell Oncol (Dordr). 2013;36(4):265–75.

    Article  CAS  Google Scholar 

  47. Kaur G, et al. Bromodomain and hedgehog pathway targets in small cell lung cancer. Cancer Lett. 2016;371(2):225–39.

    Article  CAS  PubMed  Google Scholar 

  48. Abe Y, Tanaka N. The Hedgehog signaling networks in lung cancer: the mechanisms and roles in tumor progression and implications for cancer therapy. Biomed Res Int. 2016.

    Google Scholar 

  49. Belani CP, et al. Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer: a trial of the ECOG-ACRIN Cancer Research Group (E1508). Cancer. 2016;122(15):2371–8.

    Article  CAS  PubMed  Google Scholar 

  50. Pietanza MC, et al. Final results of phase Ib of tarextumab (TRXT, OMP-59R5, anti-Notch2/3) in combination with etoposide and platinum (EP) in patients (pts) with untreated extensive-stage small-cell lung cancer (ED-SCLC). J Clin Oncol. 2015;33(15). Abstract 7508.

    Article  Google Scholar 

  51. Pan F, et al. Inhibitory effects of XAV939 on the proliferation of small-cell lung cancer H446 cells and Wnt/beta-catenin signaling pathway in vitro. Oncol Lett. 2018;16(2):1953–8.

    PubMed  PubMed Central  Google Scholar 

  52. Rouleau M, et al. PARP inhibition: PARP1 and beyond. Nature reviews. Cancer. 2010;10(4):293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Byers LA, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2(9):798–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cardnell RJ, et al. Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin Cancer Res. 2013;19(22):6322–6328.

    Article  CAS  PubMed  Google Scholar 

  55. Spigel D, et al. 1472P Phase II Study Of Carboplatin/Etoposide Plus LY2510924, A CXCR4 peptide antagonist, versus carboplatin/etoposide in patients with extensive-stage small cell lung canceR (SCLC). Ann Oncol. 2014;25(suppl_4):iv514.

    Article  Google Scholar 

  56. Donawho CK, et al. ABT-888, an orally active poly(ADP-Ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13(9):2728–37.

    Article  CAS  PubMed  Google Scholar 

  57. Owonikoko, T.K., et al., Randomized trial of cisplatin and etoposide in combination with veliparib or placebo for extensive stage small cell lung cancer: ECOG-ACRIN 2511 study. J Clin Oncol. 2017;37:222–229.

    Google Scholar 

  58. Moore K, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. New England J Med. 2018;379:2495.

    Article  CAS  Google Scholar 

  59. Woll P, et al. P1. 07–015 STOMP: a UK national cancer research network randomised, double blind, multicentre phase II trial of olaparib as maintenance therapy in SCLC: topic: drug treatment alone and in combination with radiotherapy. J Thoracic Oncol. 2017;12(1):S704–5.

    Article  Google Scholar 

  60. Noda K, et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med. 2002;346(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  61. El Maalouf G, et al. Could we expect to improve survival in small cell lung cancer? Lung Cancer. 2007;57(Suppl 2):S30–4.

    Article  PubMed  Google Scholar 

  62. Pietanza MC, et al. Randomized, double-blind, phase II study of temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol. 2018;36(23):2386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wainberg, Z.A., et al., Safety and antitumor activity of the PARP inhibitor BMN673 in a phase 1 trial recruiting metastatic small-cell lung cancer (SCLC) and germline BRCA-mutation carrier cancer patients. Am Soc Clin Oncol. 2014.

    Google Scholar 

  64. Feng Y, et al. 242 BMN 673 as single agent and in combination with temozolomide or PI3K pathway inhibitors in small cell lung cancer and gastric cancer models. Eur J Cancer. 2014;50:81.

    Article  Google Scholar 

  65. Gall Troselj K, Novak Kujundzic R, Ugarkovic D. Polycomb repressive complex’s evolutionary conserved function: the role of EZH2 status and cellular background. Clin Epigenetics. 2016;8:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yan K-S, et al. EZH2 in cancer progression and potential application in cancer therapy: a friend or foe? Int J Mol Sci. 2017;18(6):1172.

    Article  PubMed Central  CAS  Google Scholar 

  67. Hubaux R, et al. EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. J Thorac Oncol. 2013;8(8):1102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murai F, et al. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discovery. 2015;1:15026.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhou W, et al. siRNA silencing EZH2 reverses cisplatin-resistance of human non-small cell lung and gastric cancer cells. Asian Pac J Cancer Prev. 2015;16(6):2425–30.

    Article  PubMed  Google Scholar 

  70. Mayr C, et al. 3-deazaneplanocin a may directly target putative cancer stem cells in biliary tract cancer. Anticancer Res. 2015;35(9):4697–705.

    PubMed  Google Scholar 

  71. Italiano A, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–59.

    Article  CAS  PubMed  Google Scholar 

  72. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2(1):21–32.

    Article  CAS  PubMed  Google Scholar 

  73. Lu LY, et al. Aurora A is essential for early embryonic development and tumor suppression. J Biol Chem. 2008;283(46):31785–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Torchia EC, et al. Aurora kinase-A deficiency during skin development impairs cell division and stratification. J Invest Dermatol. 2013;133(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  75. Tang A, et al. Aurora kinases: novel therapy targets in cancers. Oncotarget. 2017;8(14):23937–54.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sos ML, et al. A framework for identification of actionable cancer genome dependencies in small cell lung cancer. Proc Natl Acad Sci USA. 2012;109(42):17034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu L, et al. Aurora kinase A mediates c-Myc’s oncogenic effects in hepatocellular carcinoma. Mol Carcinog. 2015;54(11):1467–79.

    Article  CAS  PubMed  Google Scholar 

  78. den Hollander J, et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood. 2010;116(9):1498–505.

    Article  CAS  Google Scholar 

  79. Brockmann M, et al. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell. 2013;24(1):75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Keller UB, et al. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. Embo j. 2007;26(10):2562–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mollaoglu G, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer cell. 2017;31(2):270–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Melichar B, et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16(4):395–405.

    Article  CAS  PubMed  Google Scholar 

  83. Owonikoko T, et al. Randomized phase 2 study of investigational aurora A kinase (AAK) inhibitor alisertib (MLN8237)+ paclitaxel (P) vs placebo+ P as second line therapy for small-cell lung cancer (SCLC). Ann Oncol. 2016;27(6):493–496.

    Google Scholar 

  84. van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378(9804):1741–55.

    Article  PubMed  Google Scholar 

  85. Kaiser U, et al. Expression of bcl-2—protein in small cell lung cancer. Lung Cancer. 1996;15(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  86. Lawson M, et al. Bcl-2 and β 1-integrin predict survival in a tissue microarray of small cell lung cancer. Br J Cancer. 2010;103(11):1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hodgkinson CL, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nature Med. 2014;20(8):897.

    Article  CAS  PubMed  Google Scholar 

  88. Byers LA, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2(9):798–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tse C, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68(9):3421–8.

    Article  CAS  PubMed  Google Scholar 

  90. Shoemaker AR, et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res. 2008;14(11):3268–77.

    Article  CAS  PubMed  Google Scholar 

  91. Hann CL, et al. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res. 2008;68(7):2321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sartorius UA, Krammer PH. Upregulation of bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int J Cancer. 2002;97(5):584–92.

    Article  CAS  PubMed  Google Scholar 

  93. Gandhi L, et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol. 2011;29(7):909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rudin CM, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18(11):3163–3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lochmann TL, et al. Venetoclax is effective in small-cell lung cancers with high BCL-2 expression. Clin Cancer Res. 2018;24(2):360–9.

    Article  CAS  PubMed  Google Scholar 

  96. D’Angelo RC, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther. 2015;14(3):779–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yuan X, Ma W. Mapped B-spline basis functions for shape design and isogeometric analysis over an arbitrary parameterization. Comput Methods Appl Mech Eng. 2014;269:87–107.

    Article  Google Scholar 

  98. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11:338.

    Article  CAS  PubMed  Google Scholar 

  99. Donnem T, et al. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer. Cancer. 2010;116(24):5676–85.

    Article  PubMed  Google Scholar 

  100. Yuan X, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  101. Yamanda S, et al. Role of ephrinB2 in nonproductive angiogenesis induced by Delta-like 4 blockade. Blood. 2009;113(15):3631–9.

    Article  CAS  PubMed  Google Scholar 

  102. Strout P, et al. Abstract A49: anti-DLL4 antibodies inhibit cancer stem cells in small cell lung cancer. Mol Cancer Ther. 2013;12(11 Suppl):A49.

    Google Scholar 

  103. Smith DC, et al. A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (Anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res. 2014;20(24):6295–303.

    Article  CAS  PubMed  Google Scholar 

  104. Bao H, et al. Evaluation of anti-cancer stem cell activity of the anti-DLL4 antibody MEDI0639 in a phase I clinical trial of SCLC. Am Soc Clin Oncol. 2016:e20093.

    Article  Google Scholar 

  105. Falchook GS, et al. Phase I study of MEDI0639 in patients with advanced solid tumors. Am Soc Clin Oncol. 2015:3024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Koczywas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koczywas, M., Amanam, I. (2019). Novel Therapies for Small Cell Lung Cancer. In: Salgia, R. (eds) Targeted Therapies for Lung Cancer. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-030-17832-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17832-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17831-4

  • Online ISBN: 978-3-030-17832-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics