Skip to main content

Biofilms

  • Chapter
  • First Online:
Women in Water Quality

Part of the book series: Women in Engineering and Science ((WES))

Abstract

This chapter focuses on biofilms, a common mode of bacteria growth ubiquitous in aquatic environments. Recent developments on biofilm detachment theories are summarized, and previously overlooked biofilm phenomena are explored, including the promising algal mats in natural environments, problematic distribution system biofilms in engineering environments, and the interaction between biofilms and emerging contaminants such as nanoparticles and disinfection byproducts. The goal of this chapter is to further demonstrate the importance of biofilms in environmental engineering and provide new insights for future biofilm control and utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazarova V, Manem J (1995) Biofilm characterization and activity analysis in water and wastewater treatment. Water Res 29(10):2227–2245

    Article  Google Scholar 

  2. Blackman IC, Frank JF (1996) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot® 59(8):827–831

    Article  Google Scholar 

  3. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33(8):1387–1392

    Article  Google Scholar 

  4. LeChevallier MW, Babcock TM, Lee RG (1987) Examination and characterization of distribution system biofilms. Appl Environ Microbiol 53(12):2714–2724

    Google Scholar 

  5. Schultz M et al (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27(1):87–98

    Article  Google Scholar 

  6. Gross M et al (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150(0):195–201

    Article  Google Scholar 

  7. Marsh PD, Bradshaw DJ (1995) Dental plaque as a biofilm. J Ind Microbiol Biotechnol 15(3):169–175

    Google Scholar 

  8. Piriou PH et al (1997) Prevention of bacterial growth in drinking water distribution systems. Water Sci Technol 35(11):283–288

    Article  Google Scholar 

  9. Raad II, Darouiche RO (1996) Catheter-related septicemia: risk reduction. Inf Med 13:807–816

    Google Scholar 

  10. Zottola EA, Sasahara KC (1994) Microbial biofilms in the food processing industry--should they be a concern? Int J Food Microbiol 23(2):125–148

    Article  Google Scholar 

  11. Stoodley P et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209

    Article  Google Scholar 

  12. Shrout JD, Nerenberg R (2012) Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environ Sci Technol 46(4):1995–2005

    Article  Google Scholar 

  13. Xavier JB et al (2005) Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix–a modelling study. Microbiology 151(Pt 12):3817–3832

    Article  Google Scholar 

  14. Callow M E, Callow J A (2002). Marine biofouling: a sticky problem. Biologist, 49(1):1–5.

    Google Scholar 

  15. Hunt SM et al (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70(12):7418–7425

    Article  Google Scholar 

  16. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199

    Article  Google Scholar 

  17. Sauer K et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154

    Article  Google Scholar 

  18. Chen X, Stewart PS (2000) Biofilm removal caused by chemical treatments. Water Res 34(17):4229–4233

    Article  Google Scholar 

  19. Bryers JD (1988) Modeling biofilm accumulation. Physiol Model Microbiol 2:109–144

    Google Scholar 

  20. Telgmann U, Horn H, Morgenroth E (2004) Influence of growth history on sloughing and erosion from biofilms. Water Res 38(17):3671–3684

    Article  Google Scholar 

  21. Chaudhry MAS, Beg SA (1998) A review on the mathematical modeling of biofilm processes: advances in fundamentals of biofilm modeling. Chem Eng Technol 21(9):701–710

    Article  Google Scholar 

  22. Luna E et al (1996) Detachment and diffusive-convective transport in an evolving heterogeneous two-dimensional biofilm hybrid model. Phys Rev E 70(061909):1–8

    Google Scholar 

  23. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72(2):205–218

    Article  Google Scholar 

  24. Choi YC, Morgenroth E (2003) Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol J Int Assoc Water Pollut Res 47(5):69–76

    Article  Google Scholar 

  25. Huang Z et al (2013) Shear-induced detachment of biofilms from hollow fiber silicone membranes. Biotechnol Bioeng 110(2):525–534

    Article  Google Scholar 

  26. Zhang W et al (2014) Glutathione-gated potassium efflux as a mechanism of active biofilm detachment. Water Environ Res 86(5):462–469

    Article  Google Scholar 

  27. Lee SF, Li YH, Bowden GH (1996) Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun 64(3):1035–1038

    Google Scholar 

  28. Bastian FO, Elzer PH, Wu XC (2012) Spiroplasma spp. biofilm formation is instrumental for their role in the pathogenesis of plant, insect and animal diseases. Exp Mol Pathol 93(1):116–128

    Article  Google Scholar 

  29. Peyton BM, Characklis WG (1993) A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41(7):728–735

    Article  Google Scholar 

  30. Thormann KM et al (2005) Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187(3):1014–1021

    Article  Google Scholar 

  31. Hsieh KM et al (1994) Interactions of microbial biofilms with toxic trace metals: 1. Observation and modeling of cell growth, attachment, and production of extracellular polymer. Biotechnol Bioeng 44(2):219–231

    Article  Google Scholar 

  32. Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41:111–117

    Article  Google Scholar 

  33. Bakke R et al (1990) Modeling a monopopulation biofilm system: Pseudomonas aeruginosa. In: Biofilms. Wiley, New York, pp 487–520

    Google Scholar 

  34. Webb JS et al (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185(15):4585–4592

    Article  Google Scholar 

  35. Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72(3):2064–2069

    Article  Google Scholar 

  36. Walters MC III et al (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323

    Article  Google Scholar 

  37. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223

    Article  Google Scholar 

  38. Thormann KM et al (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188(7):2681–2691

    Article  Google Scholar 

  39. Meyer-Reil L-A (1994) Microbial life in sedimentary biofilms—the challenge to microbial ecologists. Mar Ecol Prog Ser 112:303–311

    Article  Google Scholar 

  40. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47(s1):179–214

    Article  Google Scholar 

  41. Escartın J, Aubrey DG (1995) Flow structure and dispersion within algal mats. Estuar Coast Shelf Sci 40(4):451–472

    Article  Google Scholar 

  42. Ward DM (1978) Thermophilic methanogenesis in a hot-spring algal-bacterial mat (71 to 30 degrees C). Appl Environ Microbiol 35(6):1019–1026

    Google Scholar 

  43. Dupraz C et al (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96(3):141–162

    Article  Google Scholar 

  44. Nielsen PH, Jahn A, Palmgren R (1997) Conceptual model for production and composition of exopolymers in biofilms. Water Sci Technol 36(1):11–19

    Article  Google Scholar 

  45. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28(7):73–153

    Google Scholar 

  46. Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour Technol 94(3):229–238

    Article  Google Scholar 

  47. Roeselers G, Van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235

    Article  Google Scholar 

  48. Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78(2):151–177

    Article  Google Scholar 

  49. Bender J et al (2004) A waste effluent treatment system based on microbial mats for black sea bass Centropristis striata recycled-water mariculture. Aquac Eng 31(1):73–82

    Article  Google Scholar 

  50. Das BK et al (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43(4):883–894

    Article  Google Scholar 

  51. Al-Thukair AA, Abed RMM, Mohamed L (2007) Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar Pollut Bull 54(2):173–179

    Article  Google Scholar 

  52. Nzengung VA et al (2003) Sequestration and transformation of water soluble halogenated organic compounds using aquatic plants, algae, and microbial mats. In: Phytoremediation: transformation and control of contaminants. Wiley-Interscience, Hoboken, pp 497–528

    Chapter  Google Scholar 

  53. Paniagua-Michel J, Garcia O (2003) Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquac Eng 28(3):131–139

    Article  Google Scholar 

  54. Safonova E et al (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4(4):347–353

    Article  Google Scholar 

  55. Jacques NR, McMartin DW (2009) Evaluation of algal phytoremediation of light extractable petroleum hydrocarbons in subarctic climates. Remediat J 20(1):119–132

    Article  Google Scholar 

  56. Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Article  Google Scholar 

  57. Sethunathan N et al (2004) Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52(10):3030–3035

    Article  Google Scholar 

  58. Geyer HJ et al (2000) Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. In: Bioaccumulation–new aspects and developments. Springer, Berlin/New York, pp 1–166

    Google Scholar 

  59. He D, Dorantes-Aranda JJ, Waite TD (2012) Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environ Sci Technol 46(16):8731–8738

    Article  Google Scholar 

  60. Renault S et al (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41(2):116–126

    Article  MathSciNet  Google Scholar 

  61. Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45(18):6039–6050

    Article  Google Scholar 

  62. Hou L et al (2012) Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH 4 reduction. Chemosphere 87(3):248–252

    Article  Google Scholar 

  63. Metcalf L, Eddy HP, Tchobanoglous G (1972) Wastewater engineering: treatment, disposal, and reuse. McGraw-Hill, New York

    Google Scholar 

  64. Şen S, Demirer G (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res 37(8):1868–1878

    Article  Google Scholar 

  65. Pankhania M, Stephenson T, Semmens MJ (1994) Hollow fibre bioreactor for wastewater treatment using bubbleless membrane aeration. Water Res 28(10):2233–2236

    Article  Google Scholar 

  66. Walden C, Carbonero F, Zhang W (2015) Preliminary assessment of bacterial community change impacted by chlorine dioxide in a water treatment plant. J Environ Eng 142(2):04015077

    Article  Google Scholar 

  67. Lautenschlager K et al (2014) Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Water Res 62:40–52

    Article  Google Scholar 

  68. Berry D, Xi C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17(3):297–302

    Article  Google Scholar 

  69. Seidel CJ et al (2005) Have utilities switched to chloramines? J Am Water Works Assoc 97(10):87–97

    Article  Google Scholar 

  70. Servais P et al (2004) Biofilm in the Parisian suburbs drinking water distribution system. J Water Supply Res Technol 53(5):313–324

    Article  Google Scholar 

  71. Pinto AJ, Xi CW, Raskin L (2012) Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ Sci Technol 46(16):8851–8859

    Article  Google Scholar 

  72. Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and UV disinfection in a public drinking water distribution system. J Appl Microbiol 95(3):591–601

    Article  Google Scholar 

  73. Niquette P, Servais P, Savoir R (2000) Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res 34(6):1952–1956

    Article  Google Scholar 

  74. van der Wielen PW, Voost S, van der Kooij D (2009) Ammonia-oxidizing bacteria and archaea in groundwater treatment and drinking water distribution systems. Appl Environ Microbiol 75(14):4687–4695

    Article  Google Scholar 

  75. Templeton AS et al (2001) Pb(II) distributions at biofilm-metal oxide interfaces. Proc Natl Acad Sci U S A 98(21):11897–11902

    Article  Google Scholar 

  76. Ancion P-Y, Lear G, Lewis GD (2010) Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ Pollut 158(8):2738–2745

    Article  Google Scholar 

  77. Jang A et al (2001) Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Sci Technol 43(6):41–48

    Article  Google Scholar 

  78. St. Clair J et al (2016) Long-term behavior of simulated partial lead service line replacements. Environ Eng Sci 33(1):53–64

    Article  Google Scholar 

  79. Miller GW (2006) Integrated concepts in water reuse: managing global water needs. Desalination 187(1–3):65–75

    Article  Google Scholar 

  80. Richardson SD (2009) Water analysis: emerging contaminants and current issues. Anal Chem 81(12):4645–4677

    Article  Google Scholar 

  81. Walden C, Zhang W (2016) Biofilms versus activated sludge: considerations in metal and metal oxide nanoparticle removal from wastewater. Environ Sci Technol 50(16):8417–8431

    Article  Google Scholar 

  82. Zhang W et al (2009) Accumulation of tetracycline resistance genes in aquatic biofilms due to periodic waste loadings from swine lagoons. Environ Sci Technol 43:7643–7650

    Article  Google Scholar 

  83. Munoz, G et al (2018). Spatio-temporal dynamics of per and polyfluoroalkyl substances (PFASs) and transfer to periphytic biofilm in an urban river: case-study on the River Seine. Environmental Science and Pollution Research 25(24):23574–23582.

    Article  Google Scholar 

  84. Krasner SW et al (2013) Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Res 47(13):4433–4450

    Article  Google Scholar 

  85. Dai N, Mitch WA (2013) Relative importance of N-nitrosodimethylamine compared to total N-nitrosamines in drinking waters. Environ Sci Technol 47(8):3648–3656

    Article  Google Scholar 

  86. Charrois JWA et al (2007) Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems. J Environ Eng Sci 6(1):103–114

    Article  Google Scholar 

  87. Wilczak A et al (2003) Formation of NDMA in chloraminated water coagulated with DADMAC cationic polymer. J Am Water Works Assoc 95(9):94–106

    Article  Google Scholar 

  88. Barrett S et al (2003) Occurrence of NDMA in drinking water: a North American survey, 2001–2002. In: American Water Works Association annual conference. AWWA, Anaheim

    Google Scholar 

  89. Lee C et al (2007) Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential. Environ Sci Technol 41(6):2056–2063

    Article  Google Scholar 

  90. Gerke C et al (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273(29):18586–18593

    Article  Google Scholar 

  91. Cramton SE et al (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67(10):5427–5433

    Google Scholar 

  92. Cotton L, Graham R, Lee R (2009) The role of alginate in P. aeruginosa PAO1 biofilm structural resistance to gentamicin and ciprofloxacin. J Exp Microbiol Immunol 13:58–62

    Google Scholar 

  93. Davies DG, Geesey GG (1995) Regulation of the alginate biosynthesis gene ALGC in Pseudomonas aeruginosa during biofilm development in continuous-culture. Appl Environ Microbiol 61(3):860–867

    Google Scholar 

  94. Davies DG, Chakrabarty AM, Geesey GG (1993) Exopolysaccharide production in biofilms – substratum activation of alginate gene-expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59(4):1181–1186

    Google Scholar 

  95. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    Article  Google Scholar 

  96. Gacesa P (1998) Bacterial alginate biosynthesis – recent progress and future prospects. Microbiology-UK 144:1133–1143

    Article  Google Scholar 

  97. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology-UK 147:3–9

    Article  Google Scholar 

  98. Wang ZK, Kim J, Seo Y (2012) Influence of bacterial extracellular polymeric substances on the formation of carbonaceous and nitrogenous disinfection Byproducts. Environ Sci Technol 46(20):11361–11369

    Article  Google Scholar 

  99. Wang ZK, Choi O, Seo Y (2013) Relative contribution of biomolecules in bacterial extracellular polymeric substances to disinfection byproduct formation. Environ Sci Technol 47(17):9764–9773

    Article  Google Scholar 

  100. Cerca N, Jefferson KK (2008) Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 283(1):36–41

    Article  Google Scholar 

  101. Izano EA et al (2007) Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 43(1):1–9

    Article  Google Scholar 

  102. Joo HS, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19(12):1503–1513

    Article  Google Scholar 

  103. Camper AK (2004) Involvement of humic substances in regrowth. International Journal of Food Microbiology 92(3):355–364

    Article  Google Scholar 

  104. Emtiazi F et al (2004) Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Research, 38(5):1197–1206

    Article  Google Scholar 

  105. Teng F, Guan Y, Zhu W (2008) Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: Corrosion scales characterization and microbial community structure investigation. Corrosion Science 50(10):2816–2823

    Article  Google Scholar 

  106. Zhang Y, Edwards M (2009) Accelerated chloramine decay and microbial growth by nitrification in premise plumbing. American Water Works Association.Journal 101(11):51–62

    Article  Google Scholar 

  107. Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci: Processes Impacts 15(1):39–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W. (2020). Biofilms. In: O’Bannon, D. (eds) Women in Water Quality. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-17819-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17819-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17818-5

  • Online ISBN: 978-3-030-17819-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics