Skip to main content

Abnormal Buckling of Thin-Walled Bodies with Shape Memory Effects Under Thermally Induced Phase Transitions

  • Chapter
  • First Online:
Recent Developments in the Theory of Shells

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

Abstract

Buckling and postbuckling of thin-walled structures made from the Nickel-Titanium shape memory alloy and undergoing non-isothermal direct martensite transitions under varying temperatures are simulated. The once coupled Movchan’s model of thermo-elastic shape memory alloy behavior is represented in the incremental formulation for the use within numerical algorithms of nonlinear solid mechanics. The equilibrium state’s bifurcation is studied on the background of Lyapunov’s stability concept. The physically and geometrically nonlinear solid model allows one to study the martensite phase distribution over the cross-section as well as along the structure during its’ buckling and postbuckling deforming. It is shown that the direct martensite transition induced by temperature changes and heterogeneous stress fields in compressed prismatic beams with initial imperfections causes the buckling phenomenon. The obtained results are consistent with the analytical predictions of A.Movchan and L.Silchenko assuming the supplementary phase transform occurring everywhere in accordance with the extended Shenley concept. Thus, the fundamental assumption about decisive contribution of martensite phase transitions in the buckling of thin-walled structures of shape memory alloys is vindicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altenbach, H., Zhilin, P.A.: The theory of elastic thin shells. Adv. Mech. 11, 107–148 (1988)

    Google Scholar 

  2. Amosov, A.A., Zhavoronok, S.I.: Reduction of the plane problem of elasticity theory to a sequence of one-dimensional boundary-value problems. The J of Mekhanika Kompozitsionykh Materialov i Konstruktsii (Composite Mechanics and Design) 3(1), 69–80 (1997)

    Google Scholar 

  3. Amosov, A.A., Knyazev, A.A., Zhavoronok, S.I.: On Solution of 2D-Problem of Stressed Curvilinear Trapezoid. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 5(1), 60–72 (1999)

    Google Scholar 

  4. Bayat, Y., Toussi, H.E.: Exact solution of thermal buckling and bostbuckling of composite and sma hybrid composite beam by layerwise theory. Aerosp. Sci. Technol. 167, 484–494 (2017)

    Article  Google Scholar 

  5. Bhattacharya, K., James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 36, 531–576 (1999)

    Article  Google Scholar 

  6. Buehler, W.J., Gilfrich, J.V., Wiley, R.C.: Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Appl. Phys. 34, 1475–1477 (1963)

    Article  CAS  Google Scholar 

  7. Chang, L.C., Read, T.A.: Behavior of the elastic properties of AuCd. Trans. Metall. Soc. AIME 191, 47–53 (1951)

    CAS  Google Scholar 

  8. Choi, S., Lee, J.J., Seo, D.C., Choi, S.W.: The active buckling control of laminate composite beams with embedded shape memory alloy wires. Compos. Struct. 47, 679–686 (1999)

    Article  Google Scholar 

  9. Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Methods. Wydawnictwo IPPT PAN, Warszawa (2004). (in Polish)

    Google Scholar 

  10. Egorova, O.V., Kurbatov, A.S., Zhavoronok, S.I.: The variational equations of the extended n’th order shell theory and its application to some problems of dynamics. PNPU Mech. Bull. 2, 36–59 (2015)

    Article  Google Scholar 

  11. Eremeyev, V., Pietraszkiewicz, W.: On quasi-static propagation of the phase interface in thin-walled inelastic bodies. In: Nowacki, W.K., Zhao, H. (eds.) EMMC-10 Conference “Multi-Phase and Multi-Component Materials under Dynamic Loading”, pp. 99–105. Institute of Fundamental Technological Research of PAS, PASci, Kazimerz Dolny, Poland (2007)

    Google Scholar 

  12. Eremeyev, V.A., Pietraszkiewicz, W.: The non-linear theory of elastic shells with phase transformations. J. Elast. 74(1), 67–86 (2004)

    Article  Google Scholar 

  13. Eremeyev, V.A., Pietraszkiewicz, W.: Continuity conditions in elastic shells with phase transformation. In: Gutkowski, W., Kowalewski, I.A. (eds.) Mechanics of the 21st Century: Proceedings of the 21st ICTAM, Springer, Dordrecht, Warsaw, pp. SM19L–10,287 (2005)

    Google Scholar 

  14. Eremeyev, V.A., Pietraszkiewicz, W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)

    Google Scholar 

  15. Eremeyev, V.A., Pietraszkiewicz, W.: On tension of a two-phase elastic tube. In: Pietraszkiewicz, W., Kreja, J. (eds.) Shell Structures: Theory and Applications, vol. 2, pp. 63–66 (2010)

    Google Scholar 

  16. Eremeyev, V.A., Pietraszkiewicz, W.: Thermomechanics of shells undergoing phase transitions. J. Mech. Phys. Solids 59, 1395–1412 (2011)

    Article  CAS  Google Scholar 

  17. Eremeyev, V.A., Pietraszkiewicz, W.: Encyclopedia of thermal stress. In: Phase Transitions in Thermoviscoelastic Shells, pp. 3667–3673. Springer, Berlin (2014)

    Chapter  Google Scholar 

  18. Eremeyev, V.A., Freidin, A.B., Sharipova, L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71, 61–84 (2007)

    Google Scholar 

  19. Eremeyev, V.A., Pietraszkiewicz, W., Konopińska, V.: On continuity conditions at the phase interface of two-phase elastic shells. In: Nowacki, W.K., Zhao, H. (eds.) EMMC-10 Conference “Multi-Phase and Multi-Component Materials under Dynamic Loading”, pp. 373–379. Institute of Fundamental Technological Research of PAS, PASci, Kazimerz Dolny, Poland (2007)

    Google Scholar 

  20. Fu, Y.B., Freidin, A.B.: Characterization ofand stability of two-phase piecewise-homogeneous deformation. Proc. R. Soc. Lond. A 460, 3065–3094 (2004)

    Article  Google Scholar 

  21. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Connecticut. Acad. Sci. 3(108–248), 343–524 (1875–1878)

    Google Scholar 

  22. Gurtin, M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford (1993)

    Google Scholar 

  23. Hartl, D.J., Lagoudas, D.C.: Aerospace applications of shape memory alloys. Proc. IMechE Part G J. Aerosp. Eng. 221, 535–552 (2007)

    Article  CAS  Google Scholar 

  24. James, R.R.R.D.: Pressurized shape memory thin films. J. Elast. 59, 399–436 (2000)

    Article  Google Scholar 

  25. Jani, M.J., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, application and opportunities. Mater. Des. 56, 1078–1113 (2014)

    Google Scholar 

  26. Jiang, D., Basle, N.J., Landis, C.M., Kyriakides, C.: Buckling and recovery of NiTi tubes under axial compression. Int. J. Sol. Struct. 80, 52–63 (2016)

    Article  CAS  Google Scholar 

  27. Jiang, D., Landis, C.M., Kyriakides, S.: Effects of tension/compression asymmetry on the buckling and recovery of NiTi tube under axial compression. Int. J. Sol. Struct. 100–101, 41–53 (2016)

    Article  CAS  Google Scholar 

  28. Kabir, M.Z., Tehrani, B.T.: Closed-form solution for thermal, mechanical and thermo-mechanical buckling and post-buckling of SMA composite beams. Compos. Struct. 168, 535–548 (2017)

    Article  Google Scholar 

  29. Khachin, V.N., Pushin, V.G., Kondratiev, V.V.: Titanium Nickelide: Structure and Properties. Nauka, Moscow (1992)

    Google Scholar 

  30. Khusainov, M.A.: Investigation of axisymmetric buckling of round plates. Tech. Phys. J. 67, 118–120 (1997)

    CAS  Google Scholar 

  31. Khusainov, M.A., Beliakov, V.N.: Investigation of power characteristics of TiNi arched strip under snap-through buckling. In: Proceedings of the 1st International Workshop “Modern Problems in Strength” named after V.A. Likhachev and 33rd Workshop “Topical Problems in Strength”, Novgorod, vol. 2, pp. 139–142 (1997)

    Google Scholar 

  32. Khusainov, M.A., Malukhina, O.A.: Buckling analysis of shape memory spherical segments. In: Proceedings of the 3rd International Workshop “Modern Problems in Strength” named after V.A. Likhachev, Novgorod, vol. 2, pp. 185–189 (1999)

    Google Scholar 

  33. Khusainov, M.A., Letenkov, O.V., Batalov, A.S.: Thermal cutoff valve with an active element from shape memory alloy TiNi. Vestnik of Yaroslav the Wise Novgorod State University 65, 40–43 (2011)

    Google Scholar 

  34. Klimov, K.Y., Movchan, A.A., Silchenko, T.L.: Influence of rheonomic properties of shape memory alloys on stability of beam from these materials. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 19(2), 262–267 (2013)

    Google Scholar 

  35. Konopińska, V., Pietraszkiewicz, W.: On jump conditions at non-material singular curves in the resultant shell thermomechanics. In: Pietraszkiewisz, W., Górski, J. (eds.) Shell Structures: Theory and Applications, Balkema, Taylor & Francis Group, London, vol. 3, pp. 117–120 (2014)

    Google Scholar 

  36. Konopińska, V., Pietraszkiewicz, W.: Singular curves in the resultant thermomechanics of shells. Int. J. Eng. Sci. 80, 21–31 (2014)

    Google Scholar 

  37. Kuo, S.Y., Shian, L.C., Lai, C.H.: Flutter of buckled shape memory alloy reinforced laminates. Smart Mater. Struct. 21(11), 035020 (2012)

    Article  Google Scholar 

  38. Kurdyumov, G.V., Khandros, L.G.: First reports of the thermoelastic behaviour of the martensitic phase of Au-Cd alloys. Doklady Akademii Nauk SSSR 66(2), 211–213 (1949)

    CAS  Google Scholar 

  39. Lee, H.J., Lee, J.J., Huh, J.S.: A simulation study on the thermal buckling behavior of laminate composite shells with embedded shape memory alloy (SMA) wires. Compos. Struct. 47, 463–469 (1999)

    Article  Google Scholar 

  40. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  41. Likhachev, V.A.: Shape Memory Effect, Physics. St Petersburg (1997)

    Google Scholar 

  42. Likhachev, V.A. (ed.): Materials with Shape Memory Effect. St Petersburg (1999)

    Google Scholar 

  43. Malygin, G.A.: Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect. Physics-Uspekhi 44(2), 173–197 (2001)

    Article  CAS  Google Scholar 

  44. Malygin, G.A., Khusainov, M.A.: Stability of the mechanical behavior of an arched TiNi strip under the conditions of the constrained shape memory effect. Tech. Phys. J. 49(10), 1301–1307 (2004)

    Article  CAS  Google Scholar 

  45. Maovchan, A.A.: Accounting for the variability of elastic moduli and for the effect of stress on the phase constitution of shape memory alloys. Mech. Solids 33(1), 79–90 (1998)

    Google Scholar 

  46. Matsunaga, H.: Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Compos. Struct. 82, 499–512 (2008)

    Article  Google Scholar 

  47. Matsunaga, H.: Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Compos. Struct. 84, 132–146 (2008)

    Google Scholar 

  48. Matsunaga, H.: Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory. Compos. Struct. 88, 519–531 (2009)

    Article  Google Scholar 

  49. Matsunaga, H.: Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory. Compos. Struct. 90, 76–86 (2009)

    Article  Google Scholar 

  50. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    Book  Google Scholar 

  51. Mishustin, I.V., Movchan, A.A.: Modeling of phase and structure transformations occurring in shape memory alloys under nonmonotonically varying stresses. Mech. Solids 49(1), 27–49 (2014)

    Article  Google Scholar 

  52. Movchan, A., Silchenko, L.: Stability of a shaft made from a shape memory alloy undergoing martensite phase transitions under the action of torque strength and an axial force. J. Mach. Manuf. Reliab. 38(2), 154–160 (2009)

    Article  Google Scholar 

  53. Movchan, A., Kazarina, S., Silchenko, L., Danilin, A.: Phenomenon of stability loss due to thermoelastic phase transition under a compressive loading. In: Contemporary Research in Theory and Applied Mechanics: Proceedings of 14th US National Congress of Theory and Applied Mechanics, VA, Blacksburg, p. 424 (2002)

    Google Scholar 

  54. Movchan, A., Silchenko, L., Kazarina, S., Zhavoronok, S., Silchenko, T.: Stability of titanium nickelide rods loaded in the mode of martensite inelasticity. J. Mach. Manuf. Reliab. 41(3), 245–251 (2012)

    Article  Google Scholar 

  55. Movchan, A., Kazarina, S., Mashikhin, A., Mishustin, I., Saganov, E., Safronov, P.A.: Boundary value problems of mechanics for shape memory alloys. Uchenye Zapiski Kazanskogo Universiteta Seriya Fiziko-Matematicheskie Nauki Memoires Kazan State Univ Phys & Math 157(3):97–110 (2015)

    Google Scholar 

  56. Movchan, A.A.: Micromechanical constitutive equations for shape memory alloys. J. Mach. Manuf. Reliab. 6, 47–53 (1994)

    Google Scholar 

  57. Movchan, A.A.: Coupling effects in bending problems for beams of a shape memory alloy. J. Appl. Mech. Tech. Phys. 39(1), 143–151 (1998)

    Article  CAS  Google Scholar 

  58. Movchan, A.A.: Torsion of prismatic beams of shape memory alloys. Mech. Solids 35(6), 143–154 (2000)

    Google Scholar 

  59. Movchan, A.A., Dumansky, S.A.: Solution of the twice-coupled problem of instability of a rod of shape memory alloy caused by a direct thermo-elastic phase transformation. J. Appl. Mech. Tech. Phys. 59(4), 716–723 (2018)

    Article  Google Scholar 

  60. Movchan, A.A., Kazarina, S.A.: Experimental investigation of the buckling resulted by thermoelastic phase transforms under compressive stresses. J. Mach. Manuf. Reliab. 31(6), 82–89 (2002)

    Google Scholar 

  61. Movchan, A.A., Silchenko, L.G.: Stability of the Shenley column under creep or under straight thermoelastic martensite transformation. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 6(1), 89–103 (2000)

    Google Scholar 

  62. Movchan, A.A., Silchenko, L.G.: Buckling of a rod undergoing direct or reverse martensite transformation under compressive stresses. J. Appl. Mech. Tech. Phys. 44(3), 442–449 (2003)

    Article  CAS  Google Scholar 

  63. Movchan, A.A., Silchenko, L.G.: Analysis of buckling induced by the direct thermoelastic transformation under the action of compression stresses. Mech. Solids 39(2), 104–114 (2004)

    Google Scholar 

  64. Movchan, A.A., Silchenko, L.G.: Analytical solution of the coupled buckling problem for a plate from a shape memory alloy subjected to inverse martensite transformation. Mech. Solids 39(5), 134–139 (2004b)

    Google Scholar 

  65. Movchan, A.A., Silchenko, L.G.: Buckling of SMA elements under inverse martensite transforms. In: Proceedings of the 10th International Workshop “Dynamical and Technological Problem of Mechanics of Structures and Continua”, MAI, Moscow, vol. 1, pp. 91–93 (2004)

    Google Scholar 

  66. Movchan, A.A., Silchenko, L.G.: The stability of a plate of shape memory alloy in a direct thermoelastic phase transition. J. Appl. Math. Mech. 68(1), 53–64 (2004)

    Article  Google Scholar 

  67. Movchan, A.A., Silchenko, L.G.: The stability of a circular plate of shape memory alloy during a direct martensite transformation. J. Appl. Math. Mech. 70(6), 785–795 (2006)

    Article  Google Scholar 

  68. Movchan, A.A., Silchenko, L.G.: Stability of a round shape memory alloy plate at direct martensitic transformation. Phys. Met. Metall. 70(5), 869–879 (2006)

    Google Scholar 

  69. Movchan, A.A., Silchenko, L.G.: Buckling of a circular plate made of a shape memory alloy due to a reverse thermoelastic martensite transformation. Mech. Solids 43(1), 100–111 (2008)

    Google Scholar 

  70. Movchan, A.A., Silchenko, L.G.: Buckling of the cylindrical plate made from the shape memory alloy at thermoelastic martensite transitions in the conditions of compression and shear. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 15(2), 221–241 (2009)

    Google Scholar 

  71. Movchan, A.A., Silchenko, L.G.: Buckling of the cylindrical shell from the shape memory alloy at compression and torsion. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 15(4), 486–496 (2009)

    Google Scholar 

  72. Movchan, A.A., Kazarina, S.A., Serov, V.: Experimental investigation of the buckling caused by thermoelastic phase transitions under compressive stresses. In: Proceedings of the 13rd Petersburg Lecturing on Strength Problems, St. Petersburg, pp. 7–9 (2002)

    Google Scholar 

  73. Movchan, A.A., Movchan, I.A., Silchenko, L.G.: Stability of an annular plate of a shape memory alloy. J. Appl. Mech. Tech. Phys. 52(2), 279–287 (2011)

    Article  Google Scholar 

  74. Movchan, A.A., Slichenko, L.G., Silchenko, T.L.: Taking account of the martensite inelasticity in the reverse phase transformation in shape memory alloys. Mech. Solids 46(2), 194–203 (2011b)

    Article  Google Scholar 

  75. Movchan, A.A., Kazarina, S.A., Dumanskiy, S.A.: Once and twice coupled buckling problems for shape memory alloys. Russ. Metall. (Metally) 6, 2–8 (2017)

    Google Scholar 

  76. Nushtaev, D.V., Zhavoronok, S.I.: Dynamics of martensite phase transitions in shape memory beams under buckling and postbuckling conditions. IFAC PapersOnLine 51(2), 873–878 (2018)

    Article  Google Scholar 

  77. Ostachowicz, W., Krawczuk, M., Zak, A.: Dynamics and buckling of a multilayer composite plate with embedded SMA wires. Compos. Struct. 48, 163–167 (2000)

    Article  Google Scholar 

  78. Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  79. Ovcharenko, E.A., Klyshnikov, K.Y., Vlad, A.R., Sizova, I.N., Kokov, A.N., Nushtaev, D., Yuzhalin, A., Zhuravleva, I.: Computer-aided design of the human aortic root. Comput. Biol. Med. 54, 109–115 (2014)

    Article  CAS  Google Scholar 

  80. Park, J.S., Kim, J.H., Moon, S.H.: Thermal postbuckling and flutter characteristics of composite panels embedded with shape memory alloy fibers. Compos. Part B 36, 627–636 (2005)

    Article  CAS  Google Scholar 

  81. Pietraszkiewicz, W.: Refined resultant thermomechanics of shells. Int. J. Eng. Sci. 49, 1112–1124 (2011)

    Article  Google Scholar 

  82. Pietraszkiewicz, W.: Encyclopedia of continuum mechanics. Surface Geometry Elements. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-53605-6_186-1

    Google Scholar 

  83. Pietraszkiewicz, W.: Encyclopedia of continuum mechanics. Thin Elastic Shells, Linear Theory. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-53605-6_187-1

    Google Scholar 

  84. Pietraszkiewicz, W., Eremeyev, V.A., Konopińska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM—Zeitschr für Angew Math Mech 87(2), 150–159 (2007)

    Article  Google Scholar 

  85. Rahman, M.A., Tani, J.: Buckling of tubular superelastic shape memory alloy shafts. Struct. Eng. Mech. Int. J. 27, 523–526 (2007)

    Article  Google Scholar 

  86. Rahman, M.A., Qiu, J., Tani, J.: Buckling and postbuckling characteristics of the superelastic SMA columns—numerical simulation. J. Intell. Mater. Syst. Struct. 16, 691–702 (2005)

    Article  CAS  Google Scholar 

  87. Rahman, M.A., Qiu, J., Tani, J.: Buckling and postbuckling behavior of solid superelastic shape memory alloy shafts. Struct. Eng. Mech. Int. J. 23, 339–352 (2006)

    Article  Google Scholar 

  88. Rahman, M.A., Akanda, S.R., Hossain, M.A.: Effect of cross-section geometry on the response of an SMA column. J. Intell. Mater. Syst. Struct. 19, 243–252 (2007)

    Article  Google Scholar 

  89. Sharipova, L.L., Yeremeyev, V.A., Freidin, A.B.: The stability of an elastic two-phase sphere. Mathematical Modeling, Izv Vuzov Sev-Kavk Region Yestest Nauki Special Issue, pp. 166–168 (2001) (in Russian)

    Google Scholar 

  90. Silchenko, L.G.: A phenomenon of the loss of stability in the case of martensite inelasticity. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 8(2), 161–171 (2002)

    Google Scholar 

  91. Silchenko, L.G.: On stability of a rod made from an alloy with shape memory under direct martensite thermal-elastic phase transformation. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 9(4), 457–470 (2003)

    Google Scholar 

  92. Silchenko, L.G.: On the loss of stability of rods made of a shape memory alloy caused reactive compressive stress in the reverse martensitic phase transformation. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 10(3), 393–406 (2004)

    Google Scholar 

  93. Silchenko, L.G.: Stability cramped rods from a shape memory alloy in the reverse martensitic phase transformation. The J of Mekhanika Kompositsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 10(4), 566–576 (2004)

    Google Scholar 

  94. Silchenko, L.G.: Stability of circular plate of shape memory alloy with the direct martensitic transformation taking into account variable cross-zone size additional phase transformation. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 11(3), 451–466 (2005)

    Google Scholar 

  95. Silchenko, L.G.: Resistance of rod of shape memory alloy at thermoelastic phase transformations taking into account the transverse shear deformations. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 12(4), 458–470 (2006)

    Google Scholar 

  96. Silchenko, L.G.: Buckling of rectangular shape memory alloy plates under shear loadings. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 13(1), 141–152 (2007)

    Google Scholar 

  97. Silchenko, L.G., Silchenko, T.L.: On the buckling of shape memory alloys elements at structural transition taking threshold stresses into account. The J of Mekhanika Kompozitsionnykh Materialov i Konstruktsii (Composite Mechanics and Design) 16(4), 457–468 (2010)

    CAS  Google Scholar 

  98. Silchenko, L.G., Movchan, A.A., Silchenko, T.L.: Stability of a cylindrical shell made of a shape memory alloy. Int. Appl. Mech. 19(2), 262–277 (2014)

    Google Scholar 

  99. Simmonds, J.G.: Flexible shells, theory and applications. In: The Nonlinear Thermodynamical Theory of Shells: Descent from 3-Dimensions Without Thickness Expansions, pp. 1–11. Springer, Berlin (1984)

    Google Scholar 

  100. Song, C.: History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med. Dev. J. 2, 24–31 (2010)

    Article  Google Scholar 

  101. Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M., Molfino, R.: Critical review of current trends in shape memory alloy actuators for intelligent robotics. Int. J. Ind. Rob. 34, 285–294 (2007)

    Article  Google Scholar 

  102. Tarlakovskii, D.V., Zhavoronok, S.I.: On the compatibility equations in shell theories considering transverse shear and normal strains. In: Pietraszkiewicz, W., Witkowski, W. (eds.) Shell Structures: Theory and Applications, Balkema, Taylor & Francis Group, London, vol. 4, pp. 173–176 (2018)

    Google Scholar 

  103. Tawfik, M., Ro, J.J., Mei, C.: Thermal post-buckling and aeroelastic behavior of shape memory alloy reinforced plate. Smart Mater. Struct. 11, 297–301 (2002)

    Article  CAS  Google Scholar 

  104. Thompson, S.P., Laughlan, J.: Adaptive post-buckling response of carbon fibre composite plates employing SMA actuators. Compos. Struct. 38, 667–678 (1997)

    Article  Google Scholar 

  105. Thomson, D., Griffin, O.: Finite element predictions of active buckling control of stiffened panels. J. Intell. Mater. Syst. Struct. 4, 243–247 (1993)

    Article  Google Scholar 

  106. Watkins, R., Shaw, J.: Shape memory alloy column buckling: an experimental study. In: CAST 2013—24th International Conference on Adaptive Structures and Technology (2013)

    Google Scholar 

  107. Wei, Z.G., Sandström, R.: Review. Shape-memory materials and hybrid composites for smart systems: part I. shape-memory materials. J. Mater. Sci. 33, 3743–3762 (1998)

    Google Scholar 

  108. Whittaker, E.T., Robinson, G.: The calculus of observations: a treatise of numerical mathematics. In: The Newton-Raphson Method, Dover, New York (1967)

    Google Scholar 

  109. Yeremeyev, V.A.: Bulging of a non-linear elastic plate lying on the liquid surface taking phase transitions into account. Appl. Mech. Tech. Phys. 3, 141–147 (1991)

    Google Scholar 

  110. Yeremeyev, V.A.: Equilibrium and stability of micro-inhomogeneous elastic solids undergoing phase transitions. Mat Modelirovanie 9(2), 68–69 (1997). (in Russian)

    Google Scholar 

  111. Yeremeyev, V.A., Zubov, L.M.: The stability of the equilibrium of non-linear elastic solids undergoing phase transitions. Izv AN SSSR, MTT 2, 58–65 (1991)

    Google Scholar 

  112. Zhavoronok, S.I.: Variational formulations of Vekua-type shell theories and some of their applications. In: Pietraszkiewisz, W., Górski, J. (eds.) Shell Structures: Theory and Applications, Balkema, Taylor & Francis Group, London, vol. 3, pp. 341–344 (2014)

    Google Scholar 

  113. Zhavoronok, S.I.: A Vekua-type linear theory of thick elastic shells. ZAMM—Zeitschr für Angew Math Mech 94(1–2), 164–184 (2014)

    Article  Google Scholar 

  114. Zhavoronok, S.I.: The generalized Lagrange equations of the second kind for the extended three-dimensional nth order theory of anisotropic shells. The J Of Mekhanika kompozitsionnykh materialov i konstruktsii (Composite Mech Design 21(3), 370–381 (2015)

    Google Scholar 

  115. Zhavoronok, S.I.: On the variational formulation of the extended thick anisotropic shells theory of IN Vekua type. Procedia Eng.111, 888–895 (2015)

    Article  Google Scholar 

  116. Zhavoronok, S.I.: Encyclopedia of continuum mechanics. In: Elastic Shells, Linear Shear-Deformable Theory, Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-53605-6_194-1

    Google Scholar 

  117. Zhavoronok, S.I.: A general higher-order shell theory based on the analytical dynamics of constrained continuum systems. In: Pietraszkiewicz, W., Witkowski, W. (eds.) Shell Structures: Theory and Applications, Balkema, Taylor & Francis Group, London, vol. 4, pp. 189–192 (2018)

    Google Scholar 

Download references

Acknowledgements

This investigation was performed under the State Task for Basic Researches (register number AAAA-A19-119012290118-3), state register number AAAA-A17-117032010136-3 and partially supported by the Russian Foundation for Basic Researches under grant Nr. 19-01-00695\(\_\)a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey I. Zhavoronok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nushtaev, D.V., Zhavoronok, S.I. (2019). Abnormal Buckling of Thin-Walled Bodies with Shape Memory Effects Under Thermally Induced Phase Transitions. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_26

Download citation

Publish with us

Policies and ethics