Skip to main content

Addressing Complexity in Science|Environment|Health Pedagogy

  • Chapter
  • First Online:
Bridging Research and Practice in Science Education

Abstract

This paper aims to discuss complexity as a key feature for understanding the role of science knowledge in environmental and health contexts—a central issue in Science|Environment|Health pedagogy. Complex systems are, in principle, not predictable. In different contexts, ephemeral mechanisms produce different, sometimes completely unexpected results. The art of decision-making in complex contexts is to take scientific knowledge into account but to interpret its meaning in terms of concrete complex contexts. This is illustrated by four empirical studies on Science|Environment|Health issues, presented midway through this paper. The findings underscore the importance of introducing complexity issues into science education. Not only are all the grand health and environmental challenges of our times highly complex, but there is also evidence that introducing complexity into science education may support many students’ motivation to learn science and change practice in science classrooms. Truly appreciating the role of complexity in Science|Environment|Health pedagogy is likely to raise future citizens who understand the delicate relation between predictability and adaption and to empower them for wise decisions about societal and personal well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-El-Khalick, F., & Zeidler, D. L. (2015). New horizons for the journal of research in science teaching. Journal of Research in Science Teaching, 52, 263–267. https://doi.org/10.1002/tea.21216.

    Article  Google Scholar 

  • Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16, 3–14. https://doi.org/10.1016/0304-4076(81)90071-3.

    Article  Google Scholar 

  • Antonovsky, A. (1997). In A. Franke (Ed.), Salutogenese. Zur Entmystifizierung der Gesundheit. Tübingen: dgvt Verlag.

    Google Scholar 

  • Arnold, J. C. (2018). An integrated model of decision-making in health contexts: The role of science education in health education. International Journal of Science Education, 40, 1–19. https://doi.org/10.1080/09500693.2018.1434721.

    Article  Google Scholar 

  • Bak, P. (1996). How nature works. The science of self-organized criticality. New York: Springer.

    Google Scholar 

  • Benninghaus, J. C., Kremer, K., & Sprenger, S. (2017). Assessing high-school students’ conceptions of global water consumption and sustainability. International Research in Geographical and Environmental Education, 1–17. https://doi.org/10.1080/10382046.2017.1349373.

    Article  Google Scholar 

  • Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (1st ed., pp. 7–75). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Dillon, J. (2012). Science, environment and health education: Towards a reconceptualisation of their mutual interdependences. In A. Zeyer & R. Kyburz-Graber (Eds.), Science environment health. Towards a renewed pedagogy for science education. Dordrecht: Springer

    Google Scholar 

  • Fensham, P. J. (2012). Preparing citizens for a complex world: The grand challenge of teaching socio-scientific issues in science education. In A. Zeyer & R. Kyburz-Graber (Eds.), Science|environment|health. Towards a renewed pedagogy for science education (pp. 7–30). Dordrecht: Springer.

    Google Scholar 

  • Fremerey, C., Liefländer, A. K., & Bogner, F. X. (2014). Conceptions about drinking water of 10th graders and undergraduates. Journal of Water Resource and Protection, 6, 1112–1123. https://doi.org/10.4236/jwarp.2014.612104.

    Article  Google Scholar 

  • Glennan, S.S. (2010). Mechanisms. The Oxford Handbook of Causation.https://doi.org/10.1093/oxfordhb/9780199279739.003.0016.

  • Glotzbach, S. & Baumgärtner, S. (2009). The relationship between intra- and intergenerational ecological justice: determinants of goal conflicts and synergies in sustainability policy. In Universität Lüneburg (Hrsg.) (Bd. 144). Lüneburg: Working Paper Series in Economics.

    Google Scholar 

  • Hafen, M. (2007). Mythologie der Gesundheit. Zur Integration von Salutogenese und Pathogenese. Heidelberg: Carl Auer Verlag.

    Google Scholar 

  • Hasslöf, H., Malmberg, C., & Lundegård, I. (2016). Students’ qualification in environmental and sustainability education—Epistemic gaps or composites of critical thinking? International Journal of Science Education, 38(2), 259–275. https://doi.org/10.1080/09500693.2016.1139756.

    Article  Google Scholar 

  • Haughton, G. (1999). Environmental justice and the sustainable city. Journal of Planning Education and Research, 18(3), 233–243. https://doi.org/10.1177/0739456X9901800305.

    Article  Google Scholar 

  • Herremans, I., & Reid, R. (2002). Developing awareness of the sustainability concept. The Journal of Environmental Education, 34(1), 16–20. https://doi.org/10.1080/00958960209603477.

    Article  Google Scholar 

  • Jones, M. G., Blonder, R., Gardner, G. E., Albe, V., Falvo, M., & Chevrier, J. (2013). Nanotechnology and nanoscale science: Educational challenges. International Journal of Science Education, 35(9), 1490–1512. https://doi.org/10.1080/09500693.2013.771828.

    Article  Google Scholar 

  • Kaiser, F. G., & Fuhrer, U. (2003). Ecological behavior’s dependency on different forms of knowledge. Applied Psychology, 52(4), 598–613. https://doi.org/10.1111/1464-0597.00153.

    Article  Google Scholar 

  • Kellert, S. H. (1993). In the wake of Chaos: Unpredictable order in dynamical systems. Chicago: University of Chicago Press. Retrieved from http://www.loc.gov/catdir/description/uchi052/92030355.html.

    Book  Google Scholar 

  • Leat, D. (1998). Thinking through geography. London: Chris Kingston.

    Google Scholar 

  • Levinson, R., & The PARRISE Consortium. (2017). Socio-scientific inquiry-based learning: Taking off from STEPWISE. In L. Bencze (Ed.), Science and technology education promoting wellbeing for individuals, societies and environments – STEPWISE (pp. 477–502). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lundström, M., Sjöström, J., & Hasslöf, H. (2017). Responsible research and innovation in science education: The solution or the emperor’s new clothes? Sisyphus-Journal of Education, 5(3), 11–27.

    Google Scholar 

  • Mayring, P. (2014). Qualitative content analysis. Theoretical foundation, basic procedures and software solution. Klagenfurt.

    Google Scholar 

  • Mehren, R., Rempfler, A., Buchholz, J., Hartig, J., & Ulrich Riedhammer, E. M. (2017). System competence modeling: Theoretical foundation and empirical validation of a model involving natural, social, and human environment systems. Journal of Research in Science Teaching.https://doi.org/10.1002/tea.21436.

    Article  Google Scholar 

  • Von Neumann, J., & Burks, A. W. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Novak, J. D., & Gowin, B. (1984). Learning how to learn. Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Pedretti, E., Bencze, L., Hewitt, J., Romkey, L., & Jivraj, A. (2008). Promoting issues-based STSE perspectives in science teacher education: Problems of identity and ideology. Science & Education, 17(8–9), 941–960.

    Article  Google Scholar 

  • Pedretti, E., & Nazir, J. (2011). Currents in STSE education: Mapping a complex field, 40 years on. Science Education, 95(4), 601–626. https://doi.org/10.1002/sce.20435.

    Article  Google Scholar 

  • Pufé, I. (2012). Nachhaltigkeit (Vol. 3667): UTB.

    Google Scholar 

  • Rieß, W., & Mischo, C. (2010). Promoting systems thinking through biology lessons. International Journal of Science Education, 32(6), 705–725. https://doi.org/10.1080/09500690902769946.

    Article  Google Scholar 

  • Rosenberg, A. (2005). Philosophy of science. New York/London: Routledge.

    Book  Google Scholar 

  • Sadler, B. (1990). Sustainable development and water resource management. Alternatives, 17(3), 14–24.

    Google Scholar 

  • Schuler, S., Fanta, D., Rosenkraenzer, F., & Riess, W. (2017). Systems thinking within the scope of education for sustainable development (ESD) – A heuristic competence model as a basis for (science) teacher education. Journal of Geography in Higher Education, 1–13. https://doi.org/10.1080/03098265.2017.1339264.

    Article  Google Scholar 

  • Simonneaux, L., Panissal, N., & Brossais, E. (2013). Students’ perception of risk about nanotechnology after an SAQ teaching strategy. International Journal of Science Education, 35(14), 2376–2406. https://doi.org/10.1080/09500693.2011.635164.

    Article  Google Scholar 

  • Snowden, D.J., Boone, M.E., Snowden, D.J., & Boone, M.E. (2012). A leader’s framework for decision making. Harvard Business Review, (Nov 2007).

    Google Scholar 

  • Sjöström, J. (2018). Science teacher identity and eco-transformation of science education: Comparing Western modernism with Confucianism and reflexive Bildung. Cultural Studies of Science Education, 13, 147–161. https://doi.org/10.1007/s11422-016-9802-0.

    Article  Google Scholar 

  • Sjöström, J., & Eilks, I. (2018). Reconsidering different visions of scientific literacy and science education based on the concept of Bildung. In Y. Dori, Z. Mevarech, & D. Baker (Eds.), Cognition, metacognition, and culture in STEM education (pp. 65–88). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Trumpower, D. L., Sharara, H., & Goldsmith, T. E. (2010). Specificity of structural assessment of knowledge. Journal of Technology, Learning, and Assessment, 8(5).

    Google Scholar 

  • Wilson, M., De Boeck, P., & Carstensen, C. (2008). Explanatory item response models: A brief introduction. In J. Hartig, E. Klieme, & D. E. Leutner (Eds.), Assessment of competencies in educational contexts: State of the art and future prospects (pp. 91–120). Göttingen: Hogefe.

    Google Scholar 

  • Winkelmann, K., & Bhushan, B. (Eds.). (2016). Global perspectives of Nanoscience and engineering education. Dordrecht: Springer.

    Google Scholar 

  • WHO. (2016). Noncommunicable diseases (NCD). http://www.who.int/gho/ncd/en/. Accessed 5 March 2018.

  • World Commission on Environment and Development. (1987). Our Common Future. Oxford: Oxford University Press.

    Google Scholar 

  • Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through Socioscientific issues. Journal of Research in Science Teaching, 46, 74–101. https://doi.org/10.1002/tea.20281.

    Article  Google Scholar 

  • Zeyer, A. (2017). Gender, complexity, and science for all: Systemizing and its impact on motivation to learn science for different science subjects. Journal of Research in Science Teaching, 55, 147–171. https://doi.org/10.1002/tea.21413.

    Article  Google Scholar 

  • Zeyer, A., & Dillon, J. (Eds.). (2014). Science|environment|health—Towards a reconceptualization of three critical and inter-linked areas of education. International Journal of Science Education, 36, Special Issue. doi: https://doi.org/10.1080/09500693.2014.904993.

    Article  Google Scholar 

  • Zeyer, A., & Kyburz-Graber, R. (Eds.). (2012). Science|environment|health. Towards a renewed pedagogy for science education. Dordrecht/Boston, London: Springer. https://doi.org/10.1007/978-90-481-3949-1.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Zeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeyer, A. et al. (2019). Addressing Complexity in Science|Environment|Health Pedagogy. In: McLoughlin, E., Finlayson, O.E., Erduran, S., Childs, P.E. (eds) Bridging Research and Practice in Science Education. Contributions from Science Education Research, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-17219-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17219-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17218-3

  • Online ISBN: 978-3-030-17219-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics