Skip to main content

Nanotechnology: A Boon for Food Safety and Food Defense

  • Chapter
  • First Online:
Nanobiotechnology in Bioformulations

Abstract

Nanotechnology has the ability to innovate the agricultural and food processing industries, focusing mainly on target delivery of nutrients, determination of microbial and chemical contaminants, food storage, food processing and transportation, and also other aspects of food safety to enhance the shelf life of food. In the food industry, there are pervasive functions of nanostructured materials, from Metals, metal oxides of inorganic materials, and their nanocomposites to bioactive agents of nano-organic materials. Nanotechnology offers various benefits, but nanostructured materials raise issues related to safety. Therefore, safety and health-governing strategies should be assessed at the time of processing, preparation, smart packaging, and penetrating nanoprocessed food products. There is also a need for understanding of nanotechnology applications in the packaging and food processing industries to recognize the advantages and possible risks involved in use of nanostructured materials.

In recent years, a new stage of nanotechnology has been reached for targeting the multiple field such as protein biomarkers, drugs, nucleic acids, cancer cells, and infectious agents. Carbon nanotubes, quantum dots, magnetic nanoparticles, nanowires, and nanosensors, such as giant magnetoresistance sensors, are used in quantitative detection of biomolecules, with moderately good accuracy. There is increasing interest in use of magnetic fields in biosensing applications due to absence of ferromagnetic property in biological sample and thus no interference during detection. Hence, the latest techniques in nanotechnology have wide applications for monitoring and detection of disease related to food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Banerjee T, Shelby T, Santra S (2017) How can nanosensors detect bacterial contamination before it ever reaches the dinner table? Future Microbiol 12:97–100

    Article  CAS  PubMed  Google Scholar 

  • Bata-Vidács I, Adányi N, Beczner J, Farkas J, Székács A (2013) Nanotechnology and microbial food safety. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp 155–159

    Google Scholar 

  • Boom RM (2011) Nanotechnology in food production. In: Frewer LJ, Norde W, Fischer A, Kampers F (eds) Nanotechnology in the agri-food sector: implications for the future. Weinheim: Wiley-VCH, pp 39–57

    Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  CAS  Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder–coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  • Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R (2012) Rapid and selective detection of botulinum neurotoxin serotype-A and-B with a single immunochromatographic test strip. J Immunol Methods 380(1–2):23–29

    Article  CAS  PubMed  Google Scholar 

  • Chhikara N, Jaglan S, Sindhu N, Anshid V., Charan MVS, Panghal A (2018) Importance of Traceability in Food Supply Chain for Brand Protection and Food Safety Systems Implementation. Annals of Bio 34(2):111–118

    Google Scholar 

  • Cho YJ, Kim CJ, Kim N, Kim CT, Park B (2008) Some cases in applications of nanotechnology to food and agricultural systems. Biochip J 2(3):183–185

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46

    Article  CAS  Google Scholar 

  • Farhang B (2009) Nanotechnology and applications in food safety. In: Barbosa-Canovas GV, Mortimer A, Lineback D, Spiess W, Buckle K, Colonna P (eds) Global issues in food science and technology. Academic, San Diego, pp 401–410

    Chapter  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21

    Article  CAS  Google Scholar 

  • Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, Nemery B, Hoet PH (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116(12):1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Global Food Safety Initiative (2013) The Global Food Safety Initiative: GFSI guidance document. Version 6.3. https://www.mygfsi.com/images/mygfsi/gfsifiles/information-kit/GFSI_Guidance_Document.pdf. Accessed 4th October 2018

  • Glynn B, Lahiff S, Wernecke M, Barry T, Smith TJ, Maher M (2006) Current and emerging molecular diagnostic technologies applicable to bacterial food safety. Int J Dairy Technol 59(2):126–139

    Article  CAS  Google Scholar 

  • Graveland-Bikker JF, Kruif de CG (2006) Food nanotechnology. Trends Food Sci Technol 17(5):196–203

    Article  CAS  Google Scholar 

  • Handford CE, Dean M, Henchion M, Spence M, Elliott CT, Campbell K (2014) Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends Food Sci Technol 40(2):226–241

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101

    Article  CAS  Google Scholar 

  • Krishna VD, Wu K, Su D, Cheeran MC, Wang JP, Perez A (2018) Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54. https://doi.org/10.1016/j.fm.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  • Kuswandi BD, Heng LY (2017) Nanosensors for the detection of food contaminants. In: Grumezescu AM, Oprea A (eds) Nanotechnology applications in food. Academic, London, pp 307–333

    Chapter  Google Scholar 

  • Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, Thiesen B, Brück W, Von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30(1):52–57

    Article  CAS  PubMed  Google Scholar 

  • Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep 63(3):100–125

    Article  CAS  Google Scholar 

  • Lee SH, Pie JE, Kim YR, Lee HR, Son SW, Kim MK (2012) Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Mol Cell Toxicol 8(2):113–118

    Article  CAS  Google Scholar 

  • Lizundia E, Ruiz-Rubio L, Vilas JL, León LM (2016) Poly(l-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications. J Appl Polym Sci 133:2

    Article  CAS  Google Scholar 

  • López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM (2012) Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll 28(1):159–167

    Article  CAS  Google Scholar 

  • Luo R (2014) A colorimetric assay method for invA gene of Salmonella using DNAzyme probe self-assembled gold nanoparticles as single tag. Sensors Actuators B Chem 198:87–93

    Article  CAS  Google Scholar 

  • Malhotra BD, Srivastava S, Ali MA, Singh C (2014) Nanomaterial-based biosensors for food toxin detection. Appl Biochem Biotechnol 174(3):880–896

    Article  CAS  PubMed  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:942916. https://doi.org/10.1155/2013/942916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning L, Soon JM (2016) Food safety, food fraud, and food defense: a fast evolving literature. J Food Sci 81(4):823–834. https://doi.org/10.1111/1750-3841.13256

    Article  CAS  Google Scholar 

  • Marchant G, Sylvester D, Abbott KW (2009) Nanotechnology regulation: the United States approach. In: Hodge GA, Bowman D, Ludlow K (eds) New global frontiers in regulation: the age of nanotechnology. Cheltenham: Edward Elgar, pp 189–211

    Google Scholar 

  • Mehrad B, Ravanfar R, Licker J, Regenstein JM, Abbaspourrad A (2018) Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Res Int 105:962–969

    Article  CAS  PubMed  Google Scholar 

  • Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors Actuators B Chem 136(2):344–349

    Article  CAS  Google Scholar 

  • Mitenius N, Kennedy SP, Busta FF (2014) Food defense. In: Motarjemi Y, Lelieveld H (eds) Food safety management: a practical guide for the food industry. Academic, London, pp 937–958

    Chapter  Google Scholar 

  • Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emirates J Food Agric 25(1):10–19

    Article  Google Scholar 

  • Morones JR (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Orlov AV (2013) Magnetic immunoassay for detection of staphylococcal toxins in complex media. Anal Chem 85(2):1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Alocilja EC, Downes FP (2007) Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens Bioelectron 22(9–10):2329–2336

    Article  CAS  PubMed  Google Scholar 

  • Panghal A, Chhikara N, Sindhu N, Jaglan S (2018a) Role of Food Safety Management Systems in safe food production: A review. Journal of Food Safety 38(4):e12464

    Article  Google Scholar 

  • Panghal A, Yadav DN, Khatkar BS, Sharma H, Kumar V, Chhikara N (2018b) Post-harvest malpractices in fresh fruits and vegetables: food safety and health issues in India. Nutrition & Food Sci 48(4):561–578

    Google Scholar 

  • Park KS, Chung HJ, Khanam F, Lee H, Rashu R, Bhuiyan MT, Qadri F (2016) A magneto-DNA nanoparticle system for the rapid and sensitive diagnosis of enteric fever. Sci Rep 6:32878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pool H, Quintanar D, Dios Figueroa J, Mano CM, Bechara JEH, Godínez LA, Mendoza S (2012) Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomater 2012:86

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V and Kumar M (2017b) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)

    Google Scholar 

  • Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51(8):723–730

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran R (2009) Nanoparticles in drug delivery: potential green nanobiomedicine applications. Int J Green Nanotechnol Biomed 1(2):108–130

    Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):72–96

    Article  Google Scholar 

  • Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2009) Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci Technol 20(10):438–447

    Article  CAS  Google Scholar 

  • Rossi M, Cubadda F, Dini L, Terranova ML, Aureli F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol 40(2):127–148

    Article  CAS  Google Scholar 

  • Shao H, Min C, Issadore D, Liong M, Yoon TJ, Weissleder R, Lee H (2012) Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics 2(1):55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Star A (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103(4):921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarui A, Kawasaki H, Taiko T, Watanabe T, Yonezawa T, Arakawa R (2009) Gold-nanoparticle-supported silicon plate with polymer micelles for surface-assisted laser desorption/ionization mass spectrometry of peptides. J Nanosci Nanotechnol 9(1):159–164

    Article  CAS  PubMed  Google Scholar 

  • US Food and Drug Administration (2014) CFR—code of federal regulations title 21. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm. Accessed 05 Nov 2018

  • Valdés MG, González ACV, Calzón JAG, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166(1–2):1–19

    Article  CAS  Google Scholar 

  • Wang R, Ruan C, Kanayeva D, Lassiter K, Li Y (2008) TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett 8(9):2625–2631

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, Liu F (2014) A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta 181(13–14):1565–1572

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  • Wu W, Li J, Pan D, Li J, Song S, Rong M, Lu J (2014) Gold nanoparticle-based enzyme-linked antibody–aptamer sandwich assay for detection of Salmonella typhimurium. ACS Appl Mater Interfaces 6(19):16974–16981

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Batra A, Jain S, Ye C, Liu J, Wang JP (2015) A simulation study on superparamagnetic nanoparticle based multi-tracer tracking. Appl Phys Lett 107(17):173701

    Article  CAS  Google Scholar 

  • Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym-Plast Technol Eng 52(7):635–660

    Article  CAS  Google Scholar 

  • Yu X, Yang H (2017) Pyrethroid residue determination in organic and conventional vegetables using liquid–solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem 217:303–310

    Article  CAS  PubMed  Google Scholar 

  • Yue HY, Huang S, Chang J, Heo C, Yao F, Adhikari S, Li B (2014) ZnO nanowire arrays on 3D hierarchical graphene foam: biomarker detection of Parkinson’s disease. ACS Nano 8(2):1639–1646

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Li Y, Jiang K, Wang J, White WL, Yang S, Lu J (2017) Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 71:110–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P. et al. (2019). Nanotechnology: A Boon for Food Safety and Food Defense. In: Prasad, R., Kumar, V., Kumar, M., Choudhary, D. (eds) Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5_9

Download citation

Publish with us

Policies and ethics