Skip to main content

Flow Cytometry Methods to Monitor Immune Dysregulation Associated with Spaceflight

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Numerous studies have demonstrated that immune system dysregulation occurs both during and following spaceflight. The immune system is inherently complex, and there are many distinct subsets of immune cells, each with unique functional capabilities. Granulocytes phagocytose nonself particles, NK cells kill target cells in a nonspecific fashion, T cells kill specific target cells, and B cells manufacture plasma antibodies. There are other cell types which have overlapping functions, and all of these cell populations communicate and mediate their function via cytokine/chemokine crosstalk. Flow cytometry is useful as a versatile platform from which both the number and functional potential of many immune cell populations may be evaluated. Percentages of peripheral leukocyte subsets may be directly measured by flow cytometry, as well as intracellular antigens, DNA content, and other inherent cellular characteristics. Additionally, by culturing immune cells prior to flow cytometry analysis, various functional characteristics such as activation marker expression, cytokine secretion, phagocytosis, and target cell killing may be measured. Using this versatility, many studies have used flow cytometry techniques to investigate spaceflight-associated immune dysregulation. This chapter discusses some of the flow cytometry assays shown to identify immune alterations associated with spaceflight as well as newer cytometry techniques, which may be of use in in-flight studies. The development of an in-flight flow cytometer for both clinical and research applications during long-duration space missions will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Besmer MD, Weissbrodt DG, Kratochvil BE, Sigrist JA, Weyland MS, Hammes F (2014) The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems. Front Microbiol 5:265. https://doi.org/10.3389/fmicb.2014.00265. eCollection 2014. PubMed PMID: 24917858; PubMed Central PMCID: PMC4040452

    Article  PubMed  PubMed Central  Google Scholar 

  • Besmer MD, Epting J, Page RM, Sigrist JA, Huggenberger P, Hammes F (2016) Online flow cytometry reveals microbial dynamics influenced by concurrent natural and operational events in groundwater used for drinking water treatment. Sci Rep 6:38462. https://doi.org/10.1038/srep38462. PubMed PMID: 27924920; PubMed Central PMCID: PMC5141442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Gusewitch GA, Chritton DB, Folz JC, Lebeck LK, Nehlsen-Cannarella SL (1993) Rapid flow cytometric assay for the assessment of natural killer cell activity. J Immunol Methods 166(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Crucian B, Sams C (2005) Reduced gravity evaluation of potential spaceflight-compatible flow cytometer technology. Cytometry B Clin Cytom 66(1):1–9

    Article  PubMed  Google Scholar 

  • Crucian BE, Cubbage ML, Sams CF (2000a) Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interf Cytokine Res 20(6):547–556

    Article  CAS  Google Scholar 

  • Crucian B, Norman J, Brentz J, Pietrzyk R, Sams C (2000b) Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity. Lab Med 31(10):569–573

    Article  CAS  PubMed  Google Scholar 

  • Crucian BE, Stowe RP, Pierson DL, Sams CF (2001) Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry. J Immunol Methods 247(1–2):35–47

    Article  CAS  PubMed  Google Scholar 

  • Crucian B, Guess T, Nelman-Gonzalez M, Sams C (2006a) C-9 and other microgravity simulations: prototype flight cytometer. NASA publication TM-2006-213727: 142–145. PFC online report. http://www.nasa.gov/centers/johnson/pdf/505835main_FY06_TM-2006-213727c.pdf

  • Crucian B, Nehlsen-Cannarella S, Sams C (2006b) An improved flow cytometry method for precise quantitation of natural-killer cell activity. In: ISAC International Congress, Quebec, 20–26 May, 2006

    Google Scholar 

  • Crucian BE, Stowe RP, Pierson DL, Sams CF (2008) Immune system dysregulation following short – vs long-duration spaceflight. Aviat Space Environ Med 79(9):835–843

    Article  PubMed  Google Scholar 

  • Crucian BE, Stowe RP, Mehta SK, Yetman DL, Leal MJ, Quiriarte HD et al (2009) Immune status, latent viral reactivation, and stress during long-duration head-down bed rest. Aviat Space Environ Med 80(5 Suppl):A37–A44

    Article  PubMed  Google Scholar 

  • Crucian B, Mehta S, Stowe R, Uchakin P, Quiriarte H, Pierson D, et al (2010) Validation of procedures for monitoring crewmember immune function. In: NASA Human Research Program Investigators Workshop, 3–5 Feb 2010, Houston

    Google Scholar 

  • Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C (2015) Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 1:15013. https://doi.org/10.1038/npjmgrav.2015.13. eCollection 2015. PubMed PMID: 28725716; PubMedCentral PMCID: PMC5515498

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rosa SC, Herzenberg LA, Roederer M (2001) 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7(2):245–248

    Article  PubMed  Google Scholar 

  • Faraghat SA, Hoettges KF, Steinbach MK, van der Veen DR, Brackenbury WJ, Henslee EA, Labeed FH, Hughes MP (2017) High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc Natl Acad Sci U S A 114(18):4591–4596. https://doi.org/10.1073/pnas.1700773114. Epub 2017 Apr 13. PubMed PMID: 28408395; PubMed Central PMCID: PMC5422786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gridley DS, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S et al (2003) Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J Appl Physiol 94(5):2095–2103

    Article  PubMed  Google Scholar 

  • Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS et al (2009) Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol 106(1):194–202

    Article  PubMed  Google Scholar 

  • Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13(14):2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19(6):547–554

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Simons ER, Kapadia AS, Ott CM, Pierson DL (2008) Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin Vaccine Immunol 15(10):1523–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leys N, Baatout S, Rosier C, Dams A, s’Heeren C, Wattiez R et al (2009) The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek 96(2):227–245

    Article  CAS  PubMed  Google Scholar 

  • Mills PJ, Meck JV, Waters WW, D’Aunno D, Ziegler MG (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63(6):886–890

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Seidenberg R, Schuh SK, Exadaktylos AK, Schechter CB, Leichtle AB, Hautz WE (2018) The development and validation of different decision-making tools to predict urine culture growth out of urine flow cytometry parameter. PLoS One 13(2):e0193255. https://doi.org/10.1371/journal.pone.0193255. eCollection 2018. PubMed PMID: 29474463; PubMed Central PMCID: PMC5825091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega MT, Pecaut MJ, Gridley DS, Stodieck LS, Ferguson V, Chapes SK (2009) Shifts in bone marrow cell phenotypes caused by spaceflight. J Appl Physiol 106(2):548–555

    Article  PubMed  Google Scholar 

  • Pecaut MJ, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S et al (2003) Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. I. Immune population distributions. J Appl Physiol 94(5):2085–2094

    Article  PubMed  Google Scholar 

  • Sams CF, Crucian BE, Clift VL, Meinelt EM (1999) Development of a whole blood staining device for use during space shuttle flights. Cytometry 37(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Zhenk S, Kasdan HL, Fridge A, Tai YC (2009) Leukocyte count and two-part differential in whole blood based on a portable microflow cytometer. In: IEEE, Transducers, Denver, 21–25 June 2009, pp 616–619

    Google Scholar 

  • Shields CW 4th, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. https://doi.org/10.1039/c4lc01246a. Review. PubMed PMID:25598308; PubMed Central PMCID: PMC4331226

    Article  PubMed  PubMed Central  Google Scholar 

  • Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL et al (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74(12):1281–1284

    PubMed  Google Scholar 

  • Stowe R, Kozlova EV, Walling DM, Sams C, Pierson D (2007) Epstein-Barr virus gene expression in astronauts. In: NASA Human Research Program Workshop, Texas

    Google Scholar 

  • Stowe R, Sams C, Pierson D (2008) Cytomegalovirus reactivation in astronauts. In: NASA Human Research Program Workshop, Texas

    Google Scholar 

  • Wilson JW, Ott CM, Honer Zu Bentrup K, Ramamurthy R, Quick L, Porwollik S et al (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104(41):16299–16304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CC, Yang SS, Hung HC, Chiang IN, Peng CH, Chang SJ (2017) Rapid differentiation of cocci/mixed bacteria from rods in voided urine culture of women with uncomplicated urinary tract infections. J Clin Lab Anal 31(5). https://doi.org/10.1002/jcla.22071. Epub 2016 Nov 15

  • Yu ZT, Aw Yong KM, Fu J (2014) Microfluidic blood cell sorting: now and beyond. Small 10(9):1687–1703. https://doi.org/10.1002/smll.201302907. Epub 2014 Feb 10. Review. PubMed PMID: 24515899; PubMed Central PMCID: PMC4013196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Crucian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crucian, B., Makedonas, G., Sams, C. (2020). Flow Cytometry Methods to Monitor Immune Dysregulation Associated with Spaceflight. In: Choukèr, A. (eds) Stress Challenges and Immunity in Space. Springer, Cham. https://doi.org/10.1007/978-3-030-16996-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16996-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16995-4

  • Online ISBN: 978-3-030-16996-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics