Skip to main content

Manufacturing and Properties of Biodegradable Composites Based on Thermoplastic Starch/Polyethylene-Vinyl Alcohol and Silver Particles

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Abstract

Smart and biodegradable packaging is very desire combination due to the combination of two very important properties nowadays. From many biode-gradable polymers starch is the first one applied in the packaging industry. In this work, a processing and properties of biodegradable composites based on Mater-Bi modified with silver was presented. The Mater-Bi/Ag composites were prepared by melt blending and injection molding process. The morphology and dispersion of Ag particles in the polymer matrix were investigated with scanning electron microscopy (SEM). The crystallization, melting behavior and thermal properties were studied using differential scanning calorimetry (DSC). The Young’s modulus, tensile strength, elongation at break and tensile-impact strength for Mater-Bi/composites with different of silver content and pure polymer were compared. Mater-Bi composites modified with silver were found to be active against Pseudomonas aeruginosa, Escherichia coli, and Listeria monocytogenes. Selected mechanical, thermal and microbial properties were conducted. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of silver into Mater-Bi matrix. Silver easily incorporated in polymer matrix and produces homogeneous Mater-Bi/0.5Ag composite. The results have shown that obtained composite have good mechanical and thermal properties and simultaneously can inhibit growth of some pathogen bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Askeland, D.R.: The Science and Engineering of Materials, 2nd edn. Chapman and Hall, London (1984)

    Google Scholar 

  2. Stern, A., Asanger, F., Lang, R.W.: Creep crack growth testing of plastics. II. Data acquisition, data reduction and experimental results. Polym. Test 17(6), 423–441 (1998)

    Article  Google Scholar 

  3. Nainggolan, H., Gea, S., Bilotti, E., Peijs, T., Hutagalung, S.D.: Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi(®) bionanocomposite. Beilstein J. Nanotechnol. 4(1), 325–329 (2013)

    Article  Google Scholar 

  4. Knitter, M., Dobrzyńska-Mizera, M.: Mechanical properties of isotactic polypropylene modified with thermoplastic potato starch. Mech. Compos. Mater. 51(2), 245–252 (2015)

    Article  Google Scholar 

  5. Kabasci, S.: Bio-Based Plastics. Materials and Application. Wiley, Chichester (2014)

    Google Scholar 

  6. Rhim, J.W., Ng, P.K.: Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr. 47(4), 411–433 (2007)

    Article  Google Scholar 

  7. Marvizadeh, M.M., Nafchi, A.M., Jokar, M.: Improved physicochemical properties of tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. J. Chem. Health Risks 4(4), 25–31 (2014)

    Google Scholar 

  8. Sadegh-Hassani, F., Nafch, A.M.: Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int. J. Biol. Macromol. 67, 458–462 (2014)

    Article  Google Scholar 

  9. Dehnavi, A.S., Aroujalian, A., Raisi, A., Fazel, S.: Preparation and characterization of polyethylene/silver nanocomposite films with antibacterial activity. J. Appl. Polym. Sci. 127(2), 1180–1190 (2013)

    Article  Google Scholar 

  10. Han, J.H.: Antimicrobial packaging systems. Innovation in Food Packaging, 2nd end, pp. 80–107. Elsevier Academic Press (2014)

    Google Scholar 

  11. Appendini, P., Hotchkiss, J.H.: Immobilization of lysozyme on food contact polymers as potential antimicrobial films. Packag. Technol. Sci. 10(5), 271–279 (1997)

    Article  Google Scholar 

  12. Scannell, A.G.M., Hill, C., Ross, R.P., Marx, S., Hartmeier, W., Arendt, E.K.: Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin. Int. J. Food Microbiol. 60(2–3), 241–249 (2000)

    Article  Google Scholar 

  13. Tankhiwale, R., Bajpai, S.K.: Silver–nanoparticle–loaded chitosan lactate films with fair antibacterial properties. J. Appl. Polym. Sci. 115(3), 1894–1900 (2010)

    Article  Google Scholar 

  14. An, D.S., Kim, Y.M., Lee, S.B., Paik, H.D., Lee, D.S.: Antimicrobial low density polyethylene film coated with bacteriocins in binder medium. Food Sci. Biotechnol. 9(1), 14–20 (2000)

    Google Scholar 

  15. Natrajan, N., Sheldon, B.W.: Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. J. Food Prot. 63(9), 1189–1196 (2000)

    Article  Google Scholar 

  16. Sanchez–Valdes, S., Ortega–Ortiz, H., Ramos–de Valle, L.F., Medellin–Rodriguez, F.J., Guedea-Miranda, R.: Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J. Appl. Polym. Sci. 111, 953–962 (2008)

    Google Scholar 

  17. Fiedler, J., Kolitsch, A., Kleffner, B., Henke, D., Stenger, S., Brenner, R.E.: Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects. Int. J. Artif. Organs 34(9), 882–888 (2011)

    Article  Google Scholar 

  18. Falletta, E., Bonini, M., Fratini, E., Lo Nostro, N.A., Pesavento, G., Becheri, A., Lo, N.P., Canton, P., Baglioni, P.: Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J. Phys. Chem. C 112(31), 11758–11766 (2008)

    Article  Google Scholar 

  19. Evanoff Jr., D.D., Chumanov, G.: Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7), 1221–1231 (2005)

    Article  Google Scholar 

  20. Shameli, K., Ahmad, M.B., Zargar, M., Yunus, W.M.Z.W., Ibrahim, N.A., Shabanzadeh, P., Moghaddam, M.G.: Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. J. Nanomed. 6, 271–284 (2011)

    Article  Google Scholar 

  21. Białas, S., Mucha, M.: Influence of nanosilver on thermal stability of chitosan. Prog. Chem. Appl. Chitin Deriv. 18, 85–92 (2013)

    Google Scholar 

  22. Wu, J.J., Lee, G.J., Chen, Y.S., Hu, T.L.: The synthesis of nano-silver/polypropylene plastics for antibacterial application. Curr. Appl. Phys. 12, 89–95 (2012)

    Article  Google Scholar 

  23. Hybiak, D., Garbarczyk, J.: Silver nanoparticles in isotactic polypropylene (iPP) Part I. Silver nanoparticles as metallic nucleating agents for iPP polymorph. Polimery 59(7), 585–591 (2014)

    Article  Google Scholar 

  24. Jeziórska, R., Zielecka, M., Gutarowska, B., Żakowska, Z.: High-density polyethylene composites filled with nanosilica containing immobilized nanosilver or nanocopper: thermal, mechanical, and bactericidal properties and morphology and interphase characterization. Int. J. Polym. Sci. 2014, 1–13 (2014)

    Article  Google Scholar 

  25. Damm, C., Münstedt, H., Rösch, A.: The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater. Chem. Phys. 108(1), 61–66 (2008)

    Article  Google Scholar 

  26. Bastioli, C.: Properties and applications of Mater-Bi starch-based materials. Polym. Degrad. Stab. 59, 263–272 (1998)

    Article  Google Scholar 

  27. Chae, D.W., Kim, B.C.: Physical properties of isotactic poly(propylene)/silver nanocomposites: dynamic crystallization behavior and resultant morphology. Macromol. Mater. Eng. 290(12), 1149–1156 (2005)

    Article  Google Scholar 

  28. Tjong, S.C., Bao, S.: Structure and mechanical behavior of isotactic polypropylene composites filled with silver nanoparticles. E-Polymers 7(1), 1618–1625 (2007)

    Google Scholar 

  29. Shrivasta, S., Tanmay, B., Arnab, R., Gajendra, S., Ramachandrarao, P., Debabrata, D.: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 1–9 (2007)

    Google Scholar 

  30. Yoon, K.-Y., Byeon, J., Park, J., Hwang, J.: Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 373(2–3), 572–575 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education in Poland under grant no. 02/25/DSPB/4520. The authors thank B. Pawlak for his help in laboratory studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Knitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knitter, M., Czarnecka-Komorowska, D., Czaja-Jagielska, N., Szymanowska-Powałowska, D. (2019). Manufacturing and Properties of Biodegradable Composites Based on Thermoplastic Starch/Polyethylene-Vinyl Alcohol and Silver Particles. In: Gapiński, B., Szostak, M., Ivanov, V. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16943-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16943-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16942-8

  • Online ISBN: 978-3-030-16943-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics