Skip to main content

Motion Management in Stereotactic Body Radiation Therapy

  • Chapter
  • First Online:
Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Abstract

Motion management in stereotactic body radiation therapy poses some complex challenges and yet takes on an essential role in the execution of a successful stereotactic radiation treatment. In this chapter, we will discuss the sources of motion and techniques that have been developed to address them. The management of motion due to respiration is discussed in some detail, including numerous technologies and techniques that have been developed. Concepts for motion management, from the treatment planning stage to the treatment execution stage, are discussed. Both historical and emerging technologies are discussed including considerations regarding complexity, efficacy, and suitability to the clinical treatment site. Technical descriptions are given for the typical systems employed for monitoring and measuring motion in stereotactic body radiation therapy, including both x-ray radiation and non-x-ray radiation-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078–101.

    PubMed  Google Scholar 

  2. Balter JM, Ten Haken RK, Lawrence TS, Lam KL, Robertson JM. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys. 1996;36(1):167–74.

    CAS  PubMed  Google Scholar 

  3. Yamamoto T, Langner U, Loo BW, Shen J, Keall PJ. Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients. Int J Radiat Oncol Biol Phys. 2008;72(4):1250–8.

    PubMed  PubMed Central  Google Scholar 

  4. Berger AJ, Mitchell RA, Severinghaus JW. Regulation of respiration. N Engl J Med. 1977;297(2):92–7.

    CAS  PubMed  Google Scholar 

  5. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.

    PubMed  Google Scholar 

  6. Lujan AE, Larsen EW, Balter JM, Ten Haken RK. A method for incorporating organ motion due to breathing into 3D dose calculations. Med Phys. 1999;26(5):715–20.

    CAS  PubMed  Google Scholar 

  7. George R, Vedam S, Chung T, Ramakrishnan V, Keall P. The application of the sinusoidal model to lung cancer patient respiratory motion. Med Phys. 2005;32(9):2850–61.

    CAS  PubMed  Google Scholar 

  8. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, Van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34.

    PubMed  Google Scholar 

  9. Ruan D, Fessler JA, Balter J, Keall P. Real-time profiling of respiratory motion: baseline drift, frequency variation and fundamental pattern change. Phys Med Biol. 2009;54(15):4777.

    CAS  PubMed  Google Scholar 

  10. Shah AP, Kupelian PA, Waghorn BJ, Willoughby TR, Rineer JM, Mañon RR, et al. Real-time tumor tracking in the lung using an electromagnetic tracking system. Int J Radiat Oncol Biol Phys. 2013;86(3):477–83.

    PubMed  Google Scholar 

  11. Ehrbar S, Jöhl A, Stieb S, Riesterer O, Stark L, Guckenberger M, et al. PO-0926: Dosimetric comparison of different motion management techniques. Radiother Oncol. 2015;115:S482–S3.

    Google Scholar 

  12. Hugo GD, Rosu M. Advances in 4D radiation therapy for managing respiration: Part I–4D imaging. Z Med Phys. 2012;22(4):258–71.

    PubMed  PubMed Central  Google Scholar 

  13. Landberg T, Chavaudra J, Dobbs J, Gerard J-P, Hanks G, Horiot J-C, et al. Prescribing, recording and reporting photon beam therapy (Supplement to ICRU report 50). 1999.

    Google Scholar 

  14. Stevens CW, Munden RF, Forster KM, Kelly JF, Liao Z, Starkschall G, et al. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys. 2001;51(1):62–8.

    CAS  PubMed  Google Scholar 

  15. Bradley JD, Nofal AN, El Naqa IM, Lu W, Liu J, Hubenschmidt J, et al. Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer. Radiother Oncol. 2006;81(3):264–8.

    PubMed  Google Scholar 

  16. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(1):253–60.

    PubMed  Google Scholar 

  17. Wolthaus JW, Schneider C, Sonke J-J, van Herk M, Belderbos JS, Rossi MM, et al. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys. 2006;65(5):1560–71.

    PubMed  Google Scholar 

  18. Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Flentje M. Mid-ventilation concept for mobile pulmonary tumors: internal tumor trajectory versus selective reconstruction of four-dimensional computed tomography frames based on external breathing motion. Int J Radiat Oncol Biol Phys. 2009;74(2):602–9.

    PubMed  Google Scholar 

  19. Hanley J, Debois MM, Mah D, Mageras GS, Raben A, Rosenzweig K, et al. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys. 1999;45(3):603–11.

    CAS  PubMed  Google Scholar 

  20. Mah D, Hanley J, Rosenzweig KE, Yorke E, Braban L, Ling CC, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys. 2000;48(4):1175–85.

    CAS  PubMed  Google Scholar 

  21. Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51(5):1410–21.

    CAS  PubMed  Google Scholar 

  22. Lax I, Blomgren H, Näslund I, Svanström R. Stereotactic radiotherapy of malignancies in the abdomen: methodological aspects. Acta Oncol. 1994;33(6):677–83.

    CAS  PubMed  Google Scholar 

  23. Heinzerling JH, Anderson JF, Papiez L, Boike T, Chien S, Zhang G, et al. Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int J Radiat Oncol Biol Phys. 2008;70(5):1571–8.

    PubMed  Google Scholar 

  24. Guckenberger M, Krieger T, Richter A, Baier K, Wilbert J, Sweeney RA, et al. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother Oncol. 2009;91(3):288–95.

    PubMed  Google Scholar 

  25. Korreman SS, Juhler-Nøttrup T, Boyer AL. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance. Radiother Oncol. 2008;86(1):61–8.

    PubMed  Google Scholar 

  26. Sonke J-J, Rossi M, Wolthaus J, van Herk M, Damen E, Belderbos J. Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys. 2009;74(2):567–74.

    PubMed  Google Scholar 

  27. Dieterich S, Tang J, Rodgers J, Cleary K. Skin respiratory motion tracking for stereotactic radiosurgery using the CyberKnife. Int Congr Ser. 2003;1256:130–6.

    Google Scholar 

  28. Murphy MJ. Tracking moving organs in real time. Semin Radiat Oncol. 2004;14(1):91–100.

    PubMed  Google Scholar 

  29. Depuydt T, Verellen D, Haas O, Gevaert T, Linthout N, Duchateau M, et al. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother Oncol. 2011;98(3):365–72.

    PubMed  Google Scholar 

  30. Poulsen PR, Carl J, Nielsen J, Nielsen MS, Thomsen JB, Jensen HK, et al. Megavoltage image-based dynamic multileaf collimator tracking of a NiTi stent in porcine lungs on a linear accelerator. Int J Radiat Oncol Biol Phys. 2012;82(2):e321–e7.

    PubMed  Google Scholar 

  31. Booth JT, Caillet V, Hardcastle N, O’Brien R, Szymura K, Crasta C, et al. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR. Radiother Oncol. 2016;121(1):19–25.

    PubMed  Google Scholar 

  32. Keall PJ, Colvill E, O’Brien R, Ng JA, Poulsen PR, Eade T, et al. The first clinical implementation of electromagnetic transponder-guided MLC tracking. Med Phys. 2014;41(2):020702.

    PubMed  PubMed Central  Google Scholar 

  33. D D’Souza W, Naqvi SA, Cedric XY. Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys Med Biol. 2005;50(17):4021.

    Google Scholar 

  34. Wilbert J, Meyer J, Baier K, Guckenberger M, Herrmann C, Hess R, et al. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing. Med Phys. 2008;35(9):3911–21.

    PubMed  Google Scholar 

  35. Tao S, Gu ZH, Nathan A. Fabrication of Gd2O2S:Tb based phosphor films coupled with photodetectors for x-ray imaging applications. J Vac Sci Technol A. 2002;20(3):1091–4.

    CAS  Google Scholar 

  36. Fenwick JD, Tome WA, Soisson ET, Mehta MP, Rock MT. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol. 2006;16(4):199–208.

    PubMed  Google Scholar 

  37. Keller H, Glass M, Hinderer R, Ruchala K, Jeraj R, Olivera G, et al. Monte Carlo study of a highly efficient gas ionization detector for megavoltage imaging and image-guided radiotherapy. Med Phys. 2002;29(2):165–75.

    CAS  PubMed  Google Scholar 

  38. Berbeco RI, Jiang SB, Sharp GC, Chen GTY, Mostafavi H, Shirato H. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors. Phys Med Biol. 2004;49:12.

    Google Scholar 

  39. Jin JY, Yin FF, Tenn SE, Medin PM, Solberg TD. Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy. Med Dosim. 2008;33(2):124–34.

    PubMed  Google Scholar 

  40. Christelle Gendrin HF, Weber C. Monitoring tumor motion by real time 2D/3D registration during radiotherapy. Radiother Oncol. 2012;102:6.

    Google Scholar 

  41. Lin T, Cervino LI, Tang X, Vasconcelos N, Jiang SB. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy. Phys Med Biol. 2009;54(4):981–92.

    PubMed  Google Scholar 

  42. Shirato H, Harada T, Harabayashi T, Hida K, Endo H, Kitamura K, et al. Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(1):240–7.

    PubMed  Google Scholar 

  43. Tang X, Sharp GC, Jiang SB. Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking. Phys Med Biol. 2007;52(14):4081–98.

    PubMed  Google Scholar 

  44. Murphy MJ, Balter J, Balter S, BenComo JA Jr, Das IJ, Jiang SB, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041–63.

    PubMed  Google Scholar 

  45. Thengumpallil S, Smith K, Monnin P, Bourhis J, Bochud F, Moeckli R. Difference in performance between 3D and 4D CBCT for lung imaging: a dose and image quality analysis. J Appl Clin Med Phys. 2016;17(6):9.

    Google Scholar 

  46. Yoganathan SA, Maria Das KJ, Mohamed Ali S, Agarwal A, Mishra SP, Kumar S. Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed. Br J Radiol. 2016;89(1060):20150870.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Santoso AP, Song KH, Qin Y, Gardner SJ, Liu C, Chetty IJ, et al. Evaluation of gantry speed on image quality and imaging dose for 4D cone-beam CT acquisition. Radiat Oncol. 2016;11:98.

    PubMed  PubMed Central  Google Scholar 

  48. Thengumpallil S, Smith K, Monnin P, Bourhis J, Bochud F, Moeckli R. Difference in performance between 3D and 4D CBCT for lung imaging: a dose and image quality analysis. J Appl Clin Med Phys. 2016;17(6):97–106.

    PubMed  PubMed Central  Google Scholar 

  49. Goyal S, Kataria T. Image guidance in radiation therapy: techniques and applications. Radiol Res Pract. 2014;2014:705604.

    PubMed  PubMed Central  Google Scholar 

  50. Warren K, Clare S. The effect of the Varian amorphous silicon electronic portal imaging device on exit skin dose. Phys Med Biol. 2003;48(19):3117.

    Google Scholar 

  51. Rong Y, Walston S, Welliver MX, Chakravarti A, Quick AM. Improving intra-fractional target position accuracy using a 3D surface surrogate for left breast irradiation using the respiratory-gated deep-inspiration breath-hold technique. Plos One. 2014;9(5):e97933.

    PubMed  PubMed Central  Google Scholar 

  52. Chan M, Yang J, Song Y, Burman C, Chan P, Li S. Evaluation of imaging performance of major image guidance systems. Biomed Imaging Interv J. 2011;7(2):e11.

    PubMed  PubMed Central  Google Scholar 

  53. Yunfei Hu MB, Archibald-Heeren B, Squires M, Teh A, Seiffert K, Cheers S, Wang Y. A feasibility study on the use of tomotherapy megavoltage computed tomography images for palliative patient treatment planning. J Med Phys. 2017;42:7.

    Google Scholar 

  54. Willoughby T, Lehmann J, Bencomo JA, Jani SK, Santanam L, Sethi A, et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: report of Task Group 147. Med Phys. 2012;39(4):1728–47.

    PubMed  Google Scholar 

  55. Molloy JA, Chan G, Markovic A, McNeeley S, Pfeiffer D, Salter B, et al. Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer: report of AAPM Task Group 154. Med Phys. 2011;38(2):857–71.

    PubMed  Google Scholar 

  56. Djajaputra D, Li SD. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer. Med Phys. 2005;32(1):65–75.

    PubMed  Google Scholar 

  57. Bert C, Metheany KG, Doppke K, Chen GTY. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. Med Phys. 2005;32(9):2753–62.

    PubMed  Google Scholar 

  58. Siebert JP, Marshall SJ. Human body 3D imaging by speckle texture projection photogrammetry. Sens Rev. 2000;20(3):218–26.

    Google Scholar 

  59. Robinson D, Liu DR, Steciw S, Field C, Daly H, Saibishkumar EP, et al. An evaluation of the Clarity 3D ultrasound system for prostate localization. J Appl Clin Med Phys. 2012;13(4):100–12.

    PubMed Central  Google Scholar 

  60. Moore C, Lilley F, Sauret V, Lalor M, Burton D. Opto-electronic sensing of body surface topology changes during radiotherapy for rectal cancer. Int J Radiat Oncol. 2003;56(1):248–58.

    Google Scholar 

  61. Brahme A, Nyman P, Skatt B. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys. 2008;35(5):1670–81.

    PubMed  Google Scholar 

  62. Stieler F, Wenz F, Shi M, Lohr F. A novel surface imaging system for patient positioning and surveillance during radiotherapy A phantom study and clinical evaluation. Strahlenther Onkol. 2013;189(11):938–44.

    CAS  PubMed  Google Scholar 

  63. Pham NL, Reddy PV, Murphy JD, Sanghvi P, Hattangadi JA, Kim GY, et al. Frameless, real time, surface imaging guided radiosurgery: clinical outcomes for brain metastases. Int J Radiat Oncol. 2015;93(3):E105-E.

    Google Scholar 

  64. Cervino LI, Pawlicki T, Lawson JD, Jiang SB. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol. 2010;55(7):1863–73.

    PubMed  Google Scholar 

  65. Walter F, Freislederer P, Belka C, Heinz C, Sohn M, Roeder F. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (Catalyst (TM)). Radiat Oncol. 2016;11:154.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rong Y, Bazan JG, Sekhon A, Haglund K, Xu-Welliver M, Williams T. Minimal inter-fractional fiducial migration during image-guided lung stereotactic body radiotherapy using superlock nitinol coil fiducial markers. Plos One. 2015;10(7):e0131945.

    PubMed  PubMed Central  Google Scholar 

  67. Balter JM, Wright JN, Newell LJ, Friemel B, Dimmer S, Cheng Y, et al. Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol. 2005;61(3):933–7.

    Google Scholar 

  68. Santanam L, Malinowski K, Hubenshmidt J, Dimmer S, Mayse ML, Bradley J, et al. Fiducial-based translational localization accuracy of electromagnetic tracking system and on-board kilovoltage imaging system. Int J Radiat Oncol. 2008;70(3):892–9.

    Google Scholar 

  69. Litzenberg DW, Willoughby TR, Balter JM, Sandler HM, Wei J, Kupflian PA, et al. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int J Radiat Oncol. 2007;68(4):1199–206.

    Google Scholar 

  70. Franz A, Schmitt D, Seitel A, Chatrasingh M, Echner G, Oelfke U, et al. Standardized accuracy assessment of the calypso wireless transponder tracking system. Phys Med Biol. 2014;59(22):6797.

    CAS  PubMed  Google Scholar 

  71. Kimple RJ, Wallen EM, Pruthi R, Marks LB. A simple algorithm to assess patient suitability for Calypso-seed implantation for four-dimensional prostate localization. J Appl Clin Med Phys. 2010;11(1):252–62.

    Google Scholar 

  72. Lattanzi J, McNeeley S, Donnelly S, Palacio E, Hanlon A, Schultheiss TE, et al. Ultrasound-based stereotactic guidance in prostate cancer--quantification of organ motion and set-up errors in external beam radiation therapy. Comput Aided Surg. 2000;5(4):289–95.

    CAS  PubMed  Google Scholar 

  73. Trichter F, Ennis RD. Prostate localization using transabdominal ultrasound imaging. Int J Radiat Oncol. 2003;56(5):1225–33.

    Google Scholar 

  74. Kuban DA, Dong L, Cheung R, Strom E, De Crevoisier R. Ultrasound-based localization. Semin Radiat Oncol. 2005;15(3):180–91.

    PubMed  Google Scholar 

  75. Fung AYC, Enke CA, Ayyangar KM, Raman NV, Zhen WN, Thompson RB, et al. Prostate motion and isocenter adjustment from ultrasound-based localization during delivery of radiation therapy. Int J Radiat Oncol. 2005;61(4):984–92.

    Google Scholar 

  76. Lattanzi J, McNeeley S, Pinover W, Horwitz E, Das I, Schultheiss TE, et al. A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int J Radiat Oncol. 1999;43(4):719–25.

    CAS  Google Scholar 

  77. Little DJ, Dong L, Levy LB, Chandra A, Kuban DA. Use of portal images and bat ultrasonography to measure setup error and organ motion for prostate IMRT: implications for treatment margins. Int J Radiat Oncol. 2003;56(5):1218–24.

    Google Scholar 

  78. Fenster A, Downey DB. Three-dimensional ultrasound imaging. Annu Rev Biomed Eng. 2000;2:457–75.

    CAS  PubMed  Google Scholar 

  79. Fenster A, Downey DB. Three-dimensional ultrasound imaging and its use in quantifying organ and pathology volumes. Anal Bioanal Chem. 2003;377(6):982–9.

    CAS  PubMed  Google Scholar 

  80. Chinnaiyan P, Tome W, Patel R, Chappell R, Ritter M. 3D-ultrasound guided radiation therapy in the post-prostatectomy setting. Technol Cancer Res Treat. 2003;2(5):455–8.

    PubMed  Google Scholar 

  81. Tome WA, Meeks SL, Orton NP, Bouchet LG, Bova FJ. Commissioning and quality assurance of an optically guided three-dimensional ultrasound target localization system for radiotherapy. Med Phys. 2002;29(8):1781–8.

    PubMed  Google Scholar 

  82. Peignaux K, Truc G, Barillot I, Ammor A, Naudy S, Crehange G, et al. Clinical assessment of the use of the Sonarray system for daily prostate localization. Radiother Oncol. 2006;81(2):176–8.

    PubMed  Google Scholar 

  83. Chandra A, Dong L, Huang E, Kuban DA, O’Neill L, Rosen I, et al. Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol. 2003;56(2):436–47.

    Google Scholar 

  84. Baker M, Behrens CF. Determining intrafractional prostate motion using four dimensional ultrasound system. BMC Cancer. 2016;16:484.

    PubMed  PubMed Central  Google Scholar 

  85. Abramowitz MC, Bossart E, Flook R, Wu X, Brooks R, Lachaine M, et al. Noninvasive real-time prostate tracking using a transperineal ultrasound approach. Int J Radiat Oncol. 2012;84(3):S133-S.

    Google Scholar 

  86. Western C, Hristov D, Schlosser J. Ultrasound imaging in radiation therapy: from Interfractional to intrafractional guidance. Cureus. 2015;7(6):e280.

    PubMed  PubMed Central  Google Scholar 

  87. O’Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol. 2016;61(8):R90–137.

    PubMed  Google Scholar 

  88. Fontanarosa D, van der Meer S, Bamber J, Harris E, O’Shea T, Verhaegen F. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys Med Biol. 2015;60(3):R77–114.

    PubMed  Google Scholar 

  89. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance–guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24(3):196–9.

    PubMed  Google Scholar 

  90. Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, et al. Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys. 2016;94(2):394–403.

    PubMed  Google Scholar 

  91. Raaymakers B, Jürgenliemk-Schulz I, Bol G, Glitzner M, Kotte A, van Asselen B, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62(23):L41.

    CAS  PubMed  Google Scholar 

  92. Fallone BG. The rotating biplanar linac–magnetic resonance imaging system. Semin Radiat Oncol. 2014;24(3):200–2.

    PubMed  Google Scholar 

  93. Keall PJ, Barton M, Crozier S, et al. The Australian magnetic resonance imaging–linac program. Semin Radiat Oncol. 2014;24(3):203–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cooper, B.J., Rong, Y., Keall, P.J. (2019). Motion Management in Stereotactic Body Radiation Therapy. In: Trifiletti, D., Chao, S., Sahgal, A., Sheehan, J. (eds) Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-16924-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16924-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16923-7

  • Online ISBN: 978-3-030-16924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics