Skip to main content

Immunotherapy, the Promise for Future of Mesothelioma Treatment?

  • Chapter
  • First Online:
Mesothelioma
  • 495 Accesses

Abstract

Due to occupational asbestosis exposure, malignant pleural mesothelioma (MPM) incidence has increased continuously for the last 30 years, a plateau being anticipated around 2030. Molecular carcinogenesis of MPM involves NF2, WT1 RASSF1, p16, and BAP1 tumor-suppressor genes alterations, regulating apoptosis, cell invasion and motility, cell division, chromatin remodeling, and DNA repair control. In selected patients, debulking surgery (pleurectomy–decortication) provided unsatisfactory long-term results. First-line chemotherapy was based on a doublet of pemetrexed and cisplatin for 15 years. Addition of the monoclonal antibody bevacizumab (Avastin®), targeting vascular endothelial growth factor (VEGF), has been shown to improve overall survival (to nearly 19 months), without quality of life (QoL) alteration, in the French Intergroup-sponsored randomized Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS) phase 3 trial. The emergence of immune check-point inhibitors (ICI) in cancer treatment prompted to study whether (1) MPM could be considered as “hot” tumors regarding inflammatory infiltration, (2) ICI could play a role in MPM treatments, and (3) what could be the predictors of ICI efficacy in MPM. Convergent preliminary results currently support that, indeed, ICI could represent a major advance in future MPM standard care and are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thapa B, Salcedo A, Lin X, Walkiewicz M, Murone C, Ameratunga M, et al. The immune microenvironment, genome-wide copy number aberrations, and survival in mesothelioma. J Thorac Oncol. 2017;12(5):850–9.

    Article  Google Scholar 

  2. Yamada N, Oizumi S, Kikuchi E, Shinagawa N, Konishi-Sakakibara J, Ishimine A, et al. CD8+ tumor-infiltrating lymphocytes predict favorable prognosis in malignant pleural mesothelioma after resection. Cancer Immunol Immunother. 2010;59(10):1543–9.

    Article  CAS  Google Scholar 

  3. Sharpe A, Pauken K. The diverse functions of the PD1inhibitory pathway. Nat Rev Immunol. 2018;18:153–67.

    Article  CAS  Google Scholar 

  4. Bueno R, Stawiski E, Goldstein L, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16.

    Article  CAS  Google Scholar 

  5. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, et al. Tumor mutational burden and efficacy of Nivolumab Monotherapy and in combination with Ipilimumab in small-cell lung cancer. Cancer Cell. 2018;33(5):853–61 e4.

    Article  CAS  Google Scholar 

  6. Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 2016;6(1):80–95.

    Article  Google Scholar 

  7. Rehrauer H, Wu L, Blum W, Pecze L, Henzi T, Serre-Beinier V, et al. How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations. Oncogene. 2018;37(20):2645–59.

    Article  CAS  Google Scholar 

  8. Cedres S, Ponce-Aix S, Zugazagoitia J, Sansano I, Enguita A, Navarro-Mendivil A, et al. Analysis of expression of programmed cell death 1 ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). PLoS One. 2015;10(3):e0121071.

    Article  Google Scholar 

  9. Mansfield AS, Roden AC, Peikert T, Sheinin YM, Harrington SM, Krco CJ, et al. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J Thorac Oncol. 2014;9(7):1036–40.

    Article  CAS  Google Scholar 

  10. Inaguma S, Lasota J, Wang Z, Czapiewski P, Langfort R, Janusz Rys J, et al. Expression of ALCAM (CD166) and PD-L1 (CD274) independently predicts shorter survival in malignant pleural mesothelioma. Hum Pathol. 2018;71:1–7.

    Article  CAS  Google Scholar 

  11. Rivalland G, Kao S, Pavlakis N, Gordon B, Hughes M, Thapa B, et al. Outcomes of anti-PD-1 therapy in mesothelioma and correlation with PD-L1 expression. J Clin Oncol. 2017;35(15_suppl):8514.

    Article  Google Scholar 

  12. Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387(10026):1405–14.

    Article  CAS  Google Scholar 

  13. Khanna S, Thomas A, Abate-Daga D, Zhang J, Morrow B, Steinberg S, et al. Malignant mesothelioma effusions are infiltrated by CD3þ T cells highly expressing PD-L1 and the PD-L1þ tumor cells within these effusions are susceptible to ADCC by the anti–PD-L1 antibody Avelumab. J Thorac Oncol. 2016;11(11):1993–2005.

    Article  Google Scholar 

  14. Calabro L, Morra A, Fonsatti E, Cutaia O, Amato G, Giannarelli D, et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2013;14(11):1104–11.

    Article  CAS  Google Scholar 

  15. Ceresoli GL, Zucali PA, De Vincenzo F, Gianoncelli L, Simonelli M, Lorenzi E, et al. Retreatment with pemetrexed-based chemotherapy in patients with malignant pleural mesothelioma. Lung Cancer. 2011;72(1):73–7.

    Article  Google Scholar 

  16. Calabro L, Morra A, Fonsatti E, Cutaia O, Fazio C, Annesi D, et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study. Lancet Respir Med. 2015;3(4):301–9.

    Article  CAS  Google Scholar 

  17. Maio M, Scherpereel A, Calabro L, Aerts J, Perez SC, Bearz A, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017;18(9):1261–73.

    Article  CAS  Google Scholar 

  18. Alley EW, Lopez J, Santoro A, Morosky A, Saraf S, Piperdi B, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017;18(5):623–30.

    Article  CAS  Google Scholar 

  19. Desai A, Karrison T, Rose B, Pemberton E, Hill B, Mendoza A, et al. Phase II trial of Pembrolizumab (NCT02399371) in previously treated malignant mesothelioma: final analysis. J Thorac Oncol. 2018;13(10):S339. IASLC 19th World Conference on Lung Cancer; OA 08-03.

    Article  Google Scholar 

  20. Mauti L, Klingbiel D, Schmid S, Bouchaab H, Bartnick T, Gautschi O, Rothschild S, et al. Pembrolizumab as second or further line treatment in relapsed malignant pleural mesothelioma: a Swiss registry study. Ann Oncol. 2017;28(suppl_5):v568–72. abstr. 1615O.

    Article  Google Scholar 

  21. Quispel-Janssen J, Zago G, Schouten R, et al. A phase II study of nivolumab in malignant pleural mesothelioma (NivoMes): with translational research (TR) biopies. J Thorac Oncol. 2017;12(1):S292–S93. abstr. OA 13.01.

    Article  Google Scholar 

  22. Nakano T, Okada M, Kijima T, Aoe K, Kato T, Fujimoto N, et al. Long-term efficacy and safety of nivolumab in second- or third-line Japanese malignant pleural mesothelioma patients (phase II: MERIT study). J Thorac Oncol. 2018;13(10):S338. IASLC 19th World Conference on Lung Cancer; OA 08-01.

    Article  Google Scholar 

  23. Hassan R, Thomas A, Nemunaitis J, Patel M, Bennouna J, Chen F, et al. Phase 1b study of avelumab in advanced previously treated mesothelioma: long-term follow-up from JAVELIN solid tumor. J Clin Oncol. 2018;36(15_suppl):abstr 8563.

    Article  Google Scholar 

  24. Scherpereel A, Mazieres J, Greillier L, Dô P, Bylicki O, Monnet I, et al. Second- or third-line nivolumab (Nivo) versus nivo plus ipilimumab (Ipi) in malignant pleural mesothelioma (MPM) patients: results of the IFCT-1501 MAPS2 randomized phase II trial. J Clin Oncol. 2017;35(suppl):abstr LBA8507.

    Article  Google Scholar 

  25. Zalcman G, Mazieres J, Greillier L, Do P, Bylicki O, Monnet O, et al. Second or 3rd line Nivolumab (Nivo) versus Nivo plus Ipilimumab (Ipi) in Malignant Pleural Mesothelioma (MPM) patients: up-dated results of the IFCT-1501 MAPS2 randomized phase 2 trial. Ann Oncol. 2017;28(suppl):Abstract LBA58_PR.

    Google Scholar 

  26. Baas P, Disselhorst M, Harms E, Quispel J, K M, Burgers S. Phase II trial of Nivolumab and Ipilimumab in patients with malignant mesothelioma. J Thorac Oncol. 2017;12(11, suppl.2):S292–S93. OA 9389.

    Google Scholar 

  27. Calabro L, Morra A, Giannarelli D, Amato G, D’Incecco A, Covre A, et al. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Respir Med. 2018;6(6):451–60.

    Article  CAS  Google Scholar 

  28. Nowak A, Cook A, McDonnell A, Millward M, Creaney J, Francis R, et al. A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol. 2015;12:2483–90.

    Google Scholar 

  29. Nowak AK, Kok PS, Lesterhuis WJ, Hughes BGM, Brown C, Chuan-Hao Kao S, et al. DREAM: final results of a phase 2 trial of DuRvalumab with first line chEmotherApy in mesothelioma. J Thorac Oncol. 2018;13(10):S338–9. IASLC 19th World Conference on Lung Cancer; OA 08-02.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zalcman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brosseau, S., Gounant, V., Zalcman, G. (2019). Immunotherapy, the Promise for Future of Mesothelioma Treatment?. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics