Skip to main content

MoS2-Reduced Graphene Oxide Electrodes for Electrochemical Supercapacitor

  • Conference paper
  • First Online:
Techno-Societal 2018
  • 908 Accesses

Abstract

In the present study, molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composite was synthesized via a hydrolysis of lithiated MoS2 (LiMoS2) and the electrochemical performance of the nano sheets was evaluated for super capacitor applications. The MoS2-RGO composite electrode exhibited high specific capacitance (203 F g−1) with excellent cycling stability, compared with MoS2. The high electrochemical performance of the MoS2-RGO composite electrode is mainly attributed to the improved electron and ion transfer mechanism involving synergistic effects of MoS2 and RGO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang R, Liu P, Lang J, Zhang L, Yan X (2017) Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Mater 6:53–60

    Article  Google Scholar 

  2. Lang J, Zhang X, Liu B, Wang R, Chen J, Yan X (2018) The roles of graphene in advanced Li-ion hybrid supercapacitors. J Energy Chem 27:43–56

    Article  Google Scholar 

  3. Sun J, Wu C, Sun X, Hu H, Zhi C, Hou L, Yuan C (2017) Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J Mater Chem A 5:9443–9464

    Article  Google Scholar 

  4. Qu C, Zhao B, Jiao Y, Chen D, Dai S, Deglee BM, Chen Y, Walton KS, Zou R, Liu M (2017) Functionalized bimetallic hydroxides derived from metal−organic frameworks for high-performance hybrid super capacitor with exceptional cycling stability. ACS Energy Lett 2:1263–1269

    Article  Google Scholar 

  5. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as super capacitor electrode materials. Nat Nanotechnol 10:313–318

    Article  Google Scholar 

  6. Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KC-W, Yamauchi Y (2017) Nanoarchitectured design of porous materials and nan composites from metal-organic frameworks. Adv Mater 29:1604898

    Article  Google Scholar 

  7. Chen Y, Ma J, Li Q, Wang T (2013) Gram-scale synthesis of ultra small SnO2 nanocrystals with an excellent electrochemical performance. Nanoscale 5:3262–3265

    Article  Google Scholar 

  8. Peng Y-Y, Akuzum B, Kurra N, Zhao M-Q, Alhabeb M, Anasori B, Kumbur EC, Alshareef HN, Ger M-D, Gogotsi Y (2016) All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ Sci 9:2847–2854

    Article  Google Scholar 

  9. Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J, Zhang H (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in Lithium-ion batteries. Small 9:3433–3438

    Article  Google Scholar 

  10. Saraf M, Natarajan K, Mobin SM (2017) Multifunctional porous NiCo2O4 nanorods: sensitive enzymeless glucose detection and super capacitor properties with impedance spectroscopic investigations. New J Chem 41:9299–9313

    Article  Google Scholar 

  11. Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance super capacitors. ACS Appl Mater Interfaces 5:7405–7409

    Article  Google Scholar 

  12. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  13. Saraf M, Rajak R, Mobin SM (2016) A fascinating multitasking cu- MOF/rGO hybrid for high performance super capacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4:16432–16445

    Article  Google Scholar 

  14. Saraf M, Dar RA, Natarajan K, Srivastava AK, Mobin SM (2016) A binder-free hybrid of CuO-microspheres and rGO Nanosheets as an alternative material for next generation energy storage application. Chem Select 1:2826–2833

    Google Scholar 

  15. Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830

    Article  Google Scholar 

  16. Liang Y, Feng R, Yang S, Ma H, Liang J, Chen J (2011) Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater 23:640–643

    Article  Google Scholar 

  17. Jacopo B, Duncan TLA, Andras K (2011) Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11:5148

    Article  Google Scholar 

  18. Saraf M, Natarajan K, Saini AK, Mobin SM (2017) Small biomolecule sensors based on an innovative MoS2−rGO heterostructure modified electrode platform: a binder-free approach. Dalton Trans 46:15848–15858

    Article  Google Scholar 

  19. Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  Google Scholar 

  20. Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507

    Article  Google Scholar 

  21. Sarode KM, Bachhav SG, Patil UD, Patil DR (2018) Synthesis and characterization of MoS2-graphene nanocomposite. In: Pawar P, Ronge B, Balasubramaniam R, Seshabhattar S (eds) Techno-Societal 2016. ICATSA 2016. Springer, Cham

    Google Scholar 

  22. Sarode KM, Patil UD, Patil DR (2018) 3D MoS2-graphene composite as catalyst for enhanced efficient hydrogen evolution. Int J Chem Phys Sci 7(2):81–91

    Google Scholar 

  23. Sarode KM, UDPatil DRP (2018) Preparation of MoS2–graphene composites with excellent photocatalytic activity under visible light. Int J Curr Adv Res 7

    Google Scholar 

  24. Ramadoss A, Kim SJ (2013) Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63:434–445

    Article  Google Scholar 

  25. Zhou R, Han C-j, Wang X-m (2017) Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J Power Sources 352:99–110

    Article  Google Scholar 

  26. Saraf M, Dar RA, Natarajan K, Srivastava AK, Mobin SM (2016) A binder-free hybrid of CuO-microspheres and rGO nanosheets as an alternative material for next generation energy storage application. Chem Select 1:2826–2833

    Google Scholar 

  27. Saraf M, Natarajan K, Mobin SM (2018) Emerging robust heterostructure of MoS2-RGO for high-performance supercapacitors. ACS Appl Mater Interfaces 10:16588–16595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarode, K.M., Bachhav, S.G., Patil, U.D., Patil, D.R. (2020). MoS2-Reduced Graphene Oxide Electrodes for Electrochemical Supercapacitor. In: Pawar, P., Ronge, B., Balasubramaniam, R., Vibhute, A., Apte, S. (eds) Techno-Societal 2018 . Springer, Cham. https://doi.org/10.1007/978-3-030-16848-3_97

Download citation

Publish with us

Policies and ethics