Skip to main content

Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions

  • Conference paper
  • First Online:
Recent Advances in Big Data and Deep Learning (INNSBDDL 2019)

Part of the book series: Proceedings of the International Neural Networks Society ((INNS,volume 1))

Included in the following conference series:

Abstract

We consider the problem of finding local minimizers in non-convex and non-smooth optimization. Under the assumption of strict saddle points, positive results have been derived for first-order methods. We present the first known results for the non-smooth case, which requires different analysis and a different algorithm. This is the extended version of the paper that contains the proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137, 1–39 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

  3. Beck, A.: First-Order Methods in Optimization: MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Book  Google Scholar 

  4. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Prog. 146(1–2), 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bot, R.I., Csetnek, E.R., Nguyen, D.-K.: A proximal minimization algorithm for structured nonconvex and nonsmooth problems. arXiv preprint arXiv:1805.11056v1 [math.OC] (2018)

  6. Carmon, Y., Duchi, J., Hinder, O., Sidford, A.: Accelerated methods for nonconvex optimization. SIAM J. Optim. 28(2), 1751–1772 (2018)

    Article  MathSciNet  Google Scholar 

  7. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  8. Curtis, F.E., Robinson, D.P., Samadi, M.: A trust region algorithm with a worst-case iteration complexity of \(\cal{O}(\epsilon ^{\frac{3}{2}})\) for nonconvex optimization. Math. Program. 162(1), 1–32 (2017)

    Article  MathSciNet  Google Scholar 

  9. Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In: Advances in Neural Information Processing Systems, pp. 2933–2941 (2014)

    Google Scholar 

  10. Du, S.S., Jin, C., Lee, J.D., Jordan, M.I., Singh, A., Poczos, B.: Gradient descent can take exponential time to escape saddle points. In: Advances in Neural Information Processing Systems, pp. 1067–1077 (2017)

    Google Scholar 

  11. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Comput. 7(2), 219–269 (1995)

    Article  Google Scholar 

  12. Reddi, S.J., Sra, S., Poczos, B., Smola, A.J.: Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization. Adv. Neural Inf. Process. Syst. 29, 1145–1153 (2016)

    Google Scholar 

  13. Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points efficiently. In: ICML (2017)

    Google Scholar 

  14. Lee, J.D., Simchowitz, M., Jordan, M.I., Recht, B.: Gradient descent only converges to minimizers. In: Conference on Learning Theory, pp. 1246–1257 (2016)

    Google Scholar 

  15. Liu, Y., Yin, W.: An envelope for Davis-Yin splitting and strict saddle point avoidance. arXiv preprint arXiv:1804.08739 (2018)

  16. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence \(\cal{O}\)(1/\(k^{2}\)). In: Doklady AN SSSR (translated as Soviet Math. Docl.), vol. 269, pp. 543–547 (1983)

    Google Scholar 

  17. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math. Program. 108, 177–205 (2006)

    Article  MathSciNet  Google Scholar 

  18. Shor, N.Z.: An application of the method of gradient descent to the solution of the network transportation problem. Materialy Naucnovo Seminara po Teoret i Priklad. Voprosam Kibernet. i Issted. Operacii, Nucnyi Sov. po Kibernet, Akad. Nauk Ukrain. SSSR, vyp 1, 9–17 (1962)

    Google Scholar 

  19. Stella, L., Themelis, A., Patrinos, P.: Forward-backward Quasi-Newton methods for nonsmooth optimization problems. Comput. Optim. Appl. 67(3), 443–487 (2017)

    Article  MathSciNet  Google Scholar 

  20. Xu, Y., Jin, R., Yang, T.: First-order stochastic algorithms for escaping from saddle points in almost linear time. arXiv preprint (2018). arXiv:1711.01944v3 [math.OC]

  21. Zhu, Z., Li, Y.: Neon2: finding local minima via first-order oracles. arXiv preprint (2018). arXiv:1711.06673 [cs.LG]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhishen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Becker, S. (2020). Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_7

Download citation

Publish with us

Policies and ethics