Skip to main content
  • 813 Accesses

Abstract

During a progressive exercise test, the anaerobic threshold (theoretically) occurs when aerobic metabolism, limited as it is by the amount of O2 delivered by the cardiovascular system, is insufficient to meet the energy requirements of the exercising muscles. The anaerobic threshold is a physiologic phenomenon that is not affected by patient effort or motivation and may be determined on a submaximal exercise test. Consequently, it is an excellent index of the cardiovascular system’s capacity to support the hemodynamic demands of exercise. Because anaerobic metabolism produces CO2 (through the buffering of lactic acid by bicarbonate) but does not consume O2, during a progressive exercise test, the ventilatory anaerobic threshold (VAT) is marked by an increase in V̇CO2 out of proportion to the associated increase in V̇O2. This phenomenon can be detected by expiratory gas analysis. The V̇O2 at this point is termed the “VAT.” Other parameters from submaximal exercise may also shed light upon a patient’s cardiopulmonary function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wasserman K. Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation. 1987;76(Supp VI)(6:Pt 2):VI-29-VI-39.

    Google Scholar 

  2. Wasserman K. The Dickinson W. Richards lecture. New concepts in assessing cardiovascular function. Circulation. 1988;78(4):1060–71.

    Article  CAS  PubMed  Google Scholar 

  3. Wasserman K. The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis. 1984;129(2:Pt 2):t-40.

    Google Scholar 

  4. Rhodes J, Ubeda TA, Jenkins KJ. Exercise testing and training in children with congenital heart disease. Circulation. 2010;122(19):1957–67.

    Article  PubMed  Google Scholar 

  5. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.

    Article  CAS  PubMed  Google Scholar 

  6. Wasserman K, Hansen DA, Sue DY, Casaburi R, Whipp BJ. Principles of exercise testing and interpretation. 3rd ed. Philadelphia: Lippincott; 1999.

    Google Scholar 

  7. Spencer CT, Byrne BJ, Bryant RM, Margossian R, Maisenbacher M, Breitenger P, et al. Impaired cardiac reserve and severely diminished skeletal muscle O(2) utilization mediate exercise intolerance in Barth syndrome. Am J Physiol Heart Circ Physiol. 2011;301(5):H2122–9.

    Article  CAS  PubMed  Google Scholar 

  8. Tarnopolsky M. Exercise testing in metabolic myopathies. Phys Med Rehabil Clin N Am. 2012;23(1):173–86, xii

    Article  PubMed  Google Scholar 

  9. Cooper DM, Weiler-Ravell D. Gas exchange response to exercise in children. Am Rev Respir Dis. 1984;129(2:Pt 2):S47–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rhodes J. Exercise testing. In: Keane JF, Lock JE, Fyler DC, editors. Nadas’ pediatric cardiology. Philadelphia: Elsevier; 2006. p. 275–87.

    Google Scholar 

  11. Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ. Principles of exercise testing and interpretation. Philadelphia: Lippincott; 1999. p. 173–4.

    Google Scholar 

  12. Giardini A, Odendaal D, Khambadkone S, Derrick G. Physiologic decrease of ventilatory response to exercise in the second decade of life in healthy children. Am Heart J. 2011;161(6):1214–9.

    Article  PubMed  Google Scholar 

  13. Giardini A, Specchia S, Tacy TA, Coutsoumbas G, Gargiulo G, Donti A, et al. Usefulness of cardiopulmonary exercise to predict long-term prognosis in adults with repaired tetralogy of fallot. Am J Cardiol. 2007;99:1462–7.

    Article  PubMed  Google Scholar 

  14. Chua TP, Ponikowski P, Harrington D, Anker SD, Webb-Peploe K, Clark AL, et al. Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1997;29(7):1585–90.

    Article  CAS  PubMed  Google Scholar 

  15. Francis DP, Shamim W, Davies LC, Piepoli MF, Ponikowski P, Anker SD, et al. Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J. 2000;21(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  16. Giardini A, Hager A, Lammers AE, Derrick G, Muller J, Diller GP, et al. Ventilatory efficiency and aerobic capacity predict event-free survival in adults with atrial repair for complete transposition of the great arteries. J Am Coll Cardiol. 2009;53(17):1548–55.

    Article  PubMed  Google Scholar 

  17. Arena R, Lavie CJ, Milani RV, Myers J, Guazzi M. Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J Heart Lung Transplant. 2010;29:159–73.

    Article  PubMed  Google Scholar 

  18. Wensel R, Opitz CF, Anker SD, Winkler J, Hoffken G, Kleber FX, et al. Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation. 2002;106(3):319–24.

    Article  PubMed  Google Scholar 

  19. Buller NP, Poole-Wilson PA. Mechanism of the increased ventilatory response to exercise in patients with chronic heart failure. Br Heart J. 1990;63(5):281–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ponikowski P, Francis DP, Piepoli MF, Davies LC, Chua TP, Davos CH, et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation. 2001;103(7):967–72.

    Article  CAS  PubMed  Google Scholar 

  21. Rhodes J, Dave A, Pulling MC, Geggel RL, Marx GR, Fulton DR, et al. Effect of pulmonary artery stenoses on the cardiopulmonary response to exercise following repair of tetralogy of fallot. Am J Cardiol. 1998;81(10):1217–9.

    Article  CAS  PubMed  Google Scholar 

  22. Sutton NJ, Peng L, Lock JE, Lang P, Marx GR, Curran TJ, et al. Effect of pulmonary artery angioplasty on exercise function after repair of tetralogy of fallot. Am Heart J. 2008;155(1):182–6.

    Article  PubMed  Google Scholar 

  23. Troutman WB, Barstow TJ, Galindo AJ, Cooper DM. Abnormal dynamic cardiorespiratory responses to exercise in pediatric patients after Fontan procedure. J Am Coll Cardiol. 1998;31(3):668–73.

    Article  CAS  PubMed  Google Scholar 

  24. Grant GP, Mansell AL, Garofano RP, Hayes CJ, Bowman FO Jr, Gersony WM. Cardiorespiratory response to exercise after the fontan procedure for tricuspid atresia. Pediatr Res. 1988;24(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  25. Matsushita T, Matsuda H, Ogawa M, Ohno K, Sano T, Nakano S, et al. Assessment of the intrapulmonary ventilation-perfusion distribution after the fontan procedure for complex cardiac anomalies: relation to pulmonary hemodynamics. J Am Coll Cardiol. 1990;15(4):842–8.

    Article  CAS  PubMed  Google Scholar 

  26. Fernandes SM, Alexander ME, Graham DA, Khairy P, Rodriguez E, Pearson DD, et al. Ability of exercise testing to predict morbidity and mortality in adults with Fontan surgery. Congenit Heart Dis. 2011;6:294–303.

    Article  PubMed  Google Scholar 

  27. Meadows J, Lang P, Marx G, Rhodes J. Fontan fenestration closure has no acute effect on exercise capacity but improves ventilatory response to exercise. J Am Coll Cardiol. 2008;52(2):108–13.

    Article  PubMed  Google Scholar 

  28. Jones NL, McHardy GJ, Naimark A, Campbell EJ. Physiological dead space and alveolar-arterial gas pressure differences during exercise. Clin Sci. 1966;31(1):19–29.

    CAS  PubMed  Google Scholar 

  29. Whipp BJ, Wasserman K. Alveolar-arterial gas tension differences during graded exercise. J Appl Physiol. 1969;27(3):361–5.

    Article  CAS  PubMed  Google Scholar 

  30. Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ. Principles of exercise testing and interpretation. Philadelphia: Lippincott; 1999. p. 82.

    Google Scholar 

  31. Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol. 1996;28(6):1567–72.

    Article  CAS  PubMed  Google Scholar 

  32. Arena R, Myers J, Hsu L, Peberdy MA, Pinkstaff S, Bensimhon D, et al. The minute ventilation/carbon dioxide production slope is prognostically superior to the oxygen uptake efficiency slope. J Card Fail. 2007;13(6):462–9.

    Article  PubMed  Google Scholar 

  33. Marinov B, Mandadzhieva S, Kostianev S. Oxygen-uptake efficiency slope in healthy 7- to 18-year-old children. Pediatr Exerc Sci. 2007;19(2):159–70.

    Article  PubMed  Google Scholar 

  34. Tsai YJ, Li MH, Tsai WJ, Tuan SH, Liao TY, Lin KL. Oxygen uptake efficiency slope and peak oxygen consumption predict prognosis in children with tetralogy of fallot. Eur J Prev Cardiol. 2016;23(10):1045–50.

    Article  PubMed  Google Scholar 

  35. Giardini A, Specchia S, Gargiulo G, Sangiorgi D, Picchio FM. Accuracy of oxygen uptake efficiency slope in adults with congenital heart disease. Int J Cardiol. 2009;133(1):74–9.

    Article  PubMed  Google Scholar 

  36. Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ. Principles of exercise testing and interpretation. 3rd ed. Philadelphia: Lippincott; 1999.

    Google Scholar 

  37. Rhodes J, Geggel RL, Marx GR, Bevilacqua L, Dambach YB, Hijazi ZM. Excessive anaerobic metabolism during exercise after repair of aortic coarctation. J Pediatr. 1997;131(2):210–4.

    Article  CAS  PubMed  Google Scholar 

  38. Jacobsen JR, Garson A Jr, Gillette PC, McNamara DG. Premature ventricular contractions in normal children. J Pediatr. 1978;92:36–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wiles HB. Exercise testing for arrhythmia: children and adolescents. Prog Pediatr Cardiol. 1993;2(2):51–60.

    Article  Google Scholar 

  40. Jones NL. Clinical exercise testing. 4th ed. Philadelphia: W.B. Saunders; 1997.

    Google Scholar 

  41. Bricker JT, Porter CJ, Garson A Jr, Gillette PC, McVey P, Traweek M, et al. Exercise testing in children with Wolff-Parkinson-White syndrome. Am J Cardiol. 1985;55(8):1001–4.

    Article  CAS  PubMed  Google Scholar 

  42. Cohen MI, Triedman JK, Cannon BC, Davis AM, Drago F, Janousek J, et al. PACES/HRS expert consensus statement on the management of the asymptomatic young patient with a Wolff-Parkinson-White (WPW, ventricular preexcitation) electrocardiographic pattern: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology Foundation (ACCF), the American Heart Association (AHA), the American Academy of Pediatrics (AAP), and the Canadian Heart Rhythm Society (CHRS). Heart Rhythm. 2012;9(6):1006–24.

    Article  PubMed  Google Scholar 

  43. Vincent GM, Jaiswal D, Timothy KW. Effects of exercise on heart rate, QT, QTC and QT/QS2 in the Romano-Ward inherited long QT syndrome. Am J Cardiol. 1991;68(5):498–503.

    Article  CAS  PubMed  Google Scholar 

  44. Weintraub RG, Gow RM, Wilkinson JL. The congenital long QT syndromes in childhood. J Am Coll Cardiol. 1990;16(3):674–80.

    Article  CAS  PubMed  Google Scholar 

  45. Bricker JT, Garson A Jr, Traweek MS, Smith RT, Ward KA, Vargo TA, et al. The use of exercise testing in children to evaluate abnormalities of pacemaker function not apparent at rest. Pacing Clin Electrophysiol. 1985;8(5):656–60.

    Article  CAS  PubMed  Google Scholar 

  46. James FW, Kaplan S, Glueck CJ, Tsay JY, Knight MJ, Sarwar CJ. Responses of normal children and young adults to controlled bicycle exercise. Circulation. 1980;61(5):902–12.

    Article  CAS  PubMed  Google Scholar 

  47. Mahle WT, McBride MG, Paridon SM. Exercise performance after the arterial switch operation for d-transposition of the great arteries. Am J Cardiol. 2001;87(6):753–8.

    Article  CAS  PubMed  Google Scholar 

  48. Weindling SN, Wernovsky G, Colan SD, Parker JA, Boutin C, Mone SM, et al. Myocardial perfusion, function and exercise tolerance after the arterial switch operation. J Am Coll Cardiol. 1994;23(2):424–33.

    Article  CAS  PubMed  Google Scholar 

  49. Shimizu M, Ino H, Okeie K, Emoto Y, Yamaguchi M, Yasuda T, et al. Exercise-induced st-segment depression and systolic dysfunction in patients with nonobstructive hypertrophic cardiomyopathy. Am Heart J. 2000;140(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  50. Yetman AT, Hamilton RM, Benson LN, McCrindle BW. Long-term outcome and prognostic determinants in children with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1998;32(7):1943–50.

    Article  CAS  PubMed  Google Scholar 

  51. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934.

    Article  PubMed  Google Scholar 

  52. Kane DA, Fulton DR, Saleeb S, Zhou J, Lock JE, Geggel RL. Needles in hay: chest pain as the presenting symptom in children with serious underlying cardiac pathology. Congenit Heart Dis. 2010;5(4):366–73.

    Article  PubMed  Google Scholar 

  53. Hijazi ZM, Udelson JE, Snapper H, Rhodes J, Marx GR, Schwartz SL, et al. Physiologic significance of chronic coronary aneurysms in patients with Kawasaki disease. J Am Coll Cardiol. 1994;24(7):1633–8.

    Article  CAS  PubMed  Google Scholar 

  54. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L. Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1993;22(3):796–804.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Portions of this chapter were based upon the author’s previously published works:

  • Rhodes J, Ubeda TA, Jenkins KJ. Exercise testing and training in children with congenital heart disease. Circulation. 2010;122(19):1957–67.

  • Rhodes J. Exercise testing. In: Keane JF, Lock JE, Fyler DC, editors. Nadas’ pediatric cardiology. 2nd ed. Philadelphia: Elsevier; 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rhodes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rhodes, J. (2019). Parameters from Submaximal Exercise. In: Rhodes, J., Alexander, M., Opotowsky, A. (eds) Exercise Physiology for the Pediatric and Congenital Cardiologist. Springer, Cham. https://doi.org/10.1007/978-3-030-16818-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16818-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16817-9

  • Online ISBN: 978-3-030-16818-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics