Skip to main content

Interactive Systems Proposal for Psychomotor Rehabilitation in Hearing Impaired Children

  • Conference paper
  • First Online:
New Technologies to Improve Patient Rehabilitation (REHAB 2016)

Abstract

Research reports psychomotor deficits and delays in children with hearing impairment (HI) due to hearing deprivation and its consequences. In this paper, we examine the basic psychomotor deficits of individuals with HI and review the literature to compile systems that help train and improve their psychomotor skills, and then propose some interactive systems that can be used as tools for the psychomotor rehabilitation of children with HI.

V. M. Peñeñory, C. Manresa-Yee, I. Riquelme, C. A. Collazos and H. M. Fardoun—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Forum of Psychomotricity: Psychomotrician Professional Competences in Europe (2012)

    Google Scholar 

  2. Gheysen, F., Loots, G., Van Waelvelde, H.: Motor development of deaf children with and without cochlear implants. J. Deaf Stud. Deaf Educ. 13, 215–224 (2008). https://doi.org/10.1093/deafed/enm053

    Article  Google Scholar 

  3. Melo, R.d.S., Lemos, A., Macky, C.F.d.S.T., et al.: Postural control assessment in students with normal hearing and sensorineural hearing loss. Braz. J. Otorhinolaryngol. 81, 431–438 (2015). https://doi.org/10.1016/j.bjorl.2014.08.014

  4. Rajendran, V., Roy, F.G.: An overview of motor skill performance and balance in hearing impaired children. Ital. J. Pediatr. 37, 33 (2011). https://doi.org/10.1186/1824-7288-37-33

    Article  Google Scholar 

  5. Wiegersma, P.H., Velde, A.V.: Motor development of deaf children. J. Child Psychol. Psychiatry 24, 103–111 (1983). https://doi.org/10.1111/j.1469-7610.1983.tb00107.x

    Article  Google Scholar 

  6. Fellinger, M.J., Holzinger, D., Aigner, M., et al.: Motor performance and correlates of mental health in children who are deaf or hard of hearing. Dev. Med. Child Neurol. 57, 942–947 (2015). https://doi.org/10.1111/dmcn.12814

    Article  Google Scholar 

  7. Masuda, T., Kaga, K.: Relationship between acquisition of motor function and vestibular function in children with bilateral severe hearing loss. Acta Otolaryngol. 134, 672–678 (2014). https://doi.org/10.3109/00016489.2014.890290

    Article  Google Scholar 

  8. Engel-Yeger, B., Weissman, D.: A comparison of motor abilities and perceived self-efficacy between children with hearing impairments and normal hearing children. Disabil. Rehabil. 31, 352–358 (2009). https://doi.org/10.1080/09638280801896548

    Article  Google Scholar 

  9. Leigh, G., Ching, T.Y.C., Crowe, K., et al.: Factors affecting psychosocial and motor development in 3-year-old children who are deaf or hard of hearing. J. Deaf Stud. Deaf Educ. 20, 331–342 (2015). https://doi.org/10.1093/deafed/env028

    Article  Google Scholar 

  10. De Kegel, A., Maes, L., Van Waelvelde, H., Dhooge, I.: Examining the impact of cochlear implantation on the early gross motor development of children with a hearing loss. Ear Hear. 36, e113–e121 (2015). https://doi.org/10.1097/AUD.0000000000000133

    Article  Google Scholar 

  11. Houde, M.S., Landry, S.P., Page, S., et al.: Body perception and action following deafness. Neural Plast. (2016). https://doi.org/10.1155/2016/5260671

  12. Melo, R.d.S.: Gait performance of children and adolescents with sensorineural hearing loss. Gait Posture 57, 109–114 (2017). https://doi.org/10.1016/j.gaitpost.2017.05.031

  13. An, M., Yi, C., Jeon, H., Park, S.: Age-related changes of single-limb standing balance in children with and without deafness. Int. J. Pediatr. Otorhinolaryngol. 73, 1539–1544 (2009). https://doi.org/10.1016/j.ijporl.2009.07.020

    Article  Google Scholar 

  14. Walowska, J., Bolach, B., Bolach, E.: The influence of Pilates exercises on body balance in the standing position of hearing impaired people. Disabil. Rehabil. 1–9 (2017). https://doi.org/10.1080/09638288.2017.1370731

  15. Maes, L., De Kegel, A., Van Waelvelde, H., Dhooge, I.: Association between vestibular function and motor performance in hearing-impaired children. Otol. Neurotol. 35, e343–e347 (2014)

    Article  Google Scholar 

  16. Vitkovic, J., Le, C., Lee, S.L., Clark, R.A.: The contribution of hearing and hearing loss to balance control. Audiol. Neurotol. 21, 195–202 (2016). https://doi.org/10.1159/000445100

    Article  Google Scholar 

  17. Weaver, T.S., Shayman, C.S., Hullar, T.E.: The effect of hearing aids and cochlear implants on balance during gait. Otol. Neurotol. 38, 1327–1332 (2017). https://doi.org/10.1097/MAO.0000000000001551

    Article  Google Scholar 

  18. Melo, R.d.S., Marinho, S.E.d.S., Freire, M.E.A., et al.: Static and dynamic balance of children and adolescents with sensorineural hearing loss. Einstein (São Paulo) 15, 262–268 (2017). https://doi.org/10.1590/s1679-45082017ao3976

  19. Movallali, G., Ebrahimi, A.-A., Movallali, G., et al.: Balance performance of deaf children with and without cochlear implants. Acta Med. Iran 54, 737–742 (2016)

    Google Scholar 

  20. Cai, Y., Zheng, Y., Liang, M., et al.: Auditory spatial discrimination and the mismatch negativity response in hearing-impaired individuals. PLoS ONE 10, 1–18 (2015). https://doi.org/10.1371/journal.pone.0136299

    Article  Google Scholar 

  21. Wolter, N.E., Cushing, S.L., Madrigal, L.D.V., et al.: Unilateral hearing loss is associated with impaired balance in children. Otol. Neurotol. 37, 1589–1595 (2016). https://doi.org/10.1097/MAO.0000000000001218

    Article  Google Scholar 

  22. Oyewumi, M., Wolter, N.E., Heon, E., et al.: Using balance function to screen for vestibular impairment in children with sensorineural hearing loss and cochlear implants. Otol. Neurotol. 37, 926–932 (2016). https://doi.org/10.1097/MAO.0000000000001046

    Article  Google Scholar 

  23. Zur, O., Shimron, H.B.-R., Leisman, G., Carmeli, E.: Balance versus hearing after cochlear implant in an adult. BMJ Case Rep. (2017). https://doi.org/10.1136/bcr-2017-220391

  24. Parietti-Winkler, C., Lion, A., Montaut-Verient, B., et al.: Effects of unilateral cochlear implantation on balance control and sensory organization in adult patients with profound hearing loss. Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/621845

  25. Janky, K., Givens, D.: Vestibular, visual acuity and balance outcomes in children with cochlear implants: a preliminary report. Ear Hear. 36, e364–e372 (2015). https://doi.org/10.1097/AUD.0000000000000194.Vestibular

    Article  Google Scholar 

  26. Vidranski, T., Farkaš, D.: Motor skills in hearing impaired children with or without cochlear implant - a systematic review, 173–179 (2015)

    Google Scholar 

  27. Armstrong, B.A., Neville, H.J., Hillyard, S.A., Mitchell, T.V.: Auditory deprivation affects processing of motion, but not color. Cogn. Brain. Res. 14, 422–434 (2002). https://doi.org/10.1016/S0926-6410(02)00211-2

    Article  Google Scholar 

  28. Lévesque, J., Théoret, H., Champoux, F.: Reduced procedural motor learning in deaf individuals. Front. Hum. Neurosci. 8, 343 (2014)

    Google Scholar 

  29. Horn, D.L., Fagan, M.K., Dillon, C.M., et al.: NIH public access. Sci. York 117, 2017–2025 (2008). https://doi.org/10.1097/MLG.0b013e3181271401

    Article  Google Scholar 

  30. Savelsbergh, G., Netelenbos, J., Whiting, H.: Auditory perception and the control of spatially coordinated action of deaf and hearing impaired children. J. Child Psychol. Psychiatry 32, 489–500 (1991)

    Article  Google Scholar 

  31. Greters, M.E., Bittar, R.S.M., Grasel, S.S., et al.: Desempenho auditivo como preditor de recuperação postural em usuários de implante coclear. Braz. J. Otorhinolaryngol. 83, 16–22 (2017). https://doi.org/10.1016/j.bjorl.2016.01.002

    Article  Google Scholar 

  32. Conway, C.M., Kronenberger, W.G.: NIH public access. Medicine (Baltimore) 18, 275–279 (2010). https://doi.org/10.1111/j.1467-8721.2009.01651.x

    Article  Google Scholar 

  33. Cattani, A., Clibbens, J.: Atypical lateralization of memory for location: effects of deafness and sign language use. Brain Cogn. 58, 226–239 (2005). https://doi.org/10.1016/j.bandc.2004.12.001

    Article  Google Scholar 

  34. Cattaneo, Z., Lega, C., Cecchetto, C., Papagno, C.: Auditory deprivation affects biases of visuospatial attention as measured by line bisection. Exp. Brain Res. 232, 2767–2773 (2014). https://doi.org/10.1007/s00221-014-3960-7

    Article  Google Scholar 

  35. Zhang, M., Tan, X., Shen, L., et al.: Interaction between allocentric and egocentric reference frames in deaf and hearing populations. Neuropsychologia 54, 68–76 (2014). https://doi.org/10.1016/j.neuropsychologia.2013.12.015

    Article  Google Scholar 

  36. Pyers, J.E., Shusterman, A., Senghas, A., et al.: Evidence from an emerging sign language reveals that language supports spatial cognition. Proc. Natl. Acad. Sci. 107, 12116–12120 (2010). https://doi.org/10.1073/pnas.0914044107

    Article  Google Scholar 

  37. Gentner, D., Özyürek, A., Gürcanli, Ö., Goldin-Meadow, S.: Spatial language facilitates spatial cognition: evidence from children who lack language input. Cognition 127, 318–330 (2013). https://doi.org/10.1016/j.cognition.2013.01.003

    Article  Google Scholar 

  38. Arnold, P., Mills, M.: Memory for faces, shoes, and objects by deaf and hearing signers and hearing nonsigners. J. Psycholinguist. Res. 30, 185–195 (2001). https://doi.org/10.1023/A:1010329912848

    Article  Google Scholar 

  39. Nava, E., Bottari, D., Zampini, M., Pavani, F.: Visual temporal order judgment in profoundly deaf individuals. Exp. Brain Res. 190, 179–188 (2008)

    Article  Google Scholar 

  40. Moore, B.C.J.: The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. JARO – J. Assoc. Res. Otolaryngol. 9, 399–406 (2008). https://doi.org/10.1007/s10162-008-0143-x

    Article  Google Scholar 

  41. Colin, C., Zuinen, T., Bayard, C., Leybaert, J.: Phonological processing of rhyme in spoken language and location in sign language by deaf and hearing participants: a neurophysiological study. Neurophysiol. Clin. 43, 151–160 (2013). https://doi.org/10.1016/j.neucli.2013.03.001

    Article  Google Scholar 

  42. Bharadwaj, S.V., Matzke, P.L., Daniel, L.L.: Multisensory processing in children with cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 76, 890–895 (2012). https://doi.org/10.1016/j.ijporl.2012.02.066

    Article  Google Scholar 

  43. Campos, P.D., Alvarenga, K.D.F., Frederigue, N.B., et al.: Temporal organization skills in cochlear implants recipients. Braz. J. Otorhinolaryngol. 74, 884–889 (2008). https://doi.org/10.1016/S1808-8694(15)30149-X

    Article  Google Scholar 

  44. Peñeñory, V.M., Manresa-Yee, C., Riquelme, I., et al.: Scoping review of systems to train psychomotor skills in hearing impaired children. Sensors 18, 2546 (2018)

    Article  Google Scholar 

  45. Iversen, O., Kortbek, K.: Stepstone: an interactive floor application for hearing impaired children with a cochlear implant. In: Proceedings of the 6th International Conference on Interaction Design and Children, Aalborg, Denmark, 6–8 June 2007, pp. 117–124 (2007)

    Google Scholar 

  46. Egusa, R., Wada, K., Namatame, M.: Development of an interactive puppet show system for the hearing-impaired people. In: Proceedings of the CONTENT 2012: The Fourth International Conference on Creative Content Technologies, Nice, France, 22–27 July 2012, pp. 69–71 (2012)

    Google Scholar 

  47. Marnik, J., Samolej, S., Kapu, T., Oszust, M., Wysocki, M.: Using computer graphics, vision and gesture recognition tools for building interactive systems supporting therapy of children. Hum. Comput. Syst. Interact. Backgrounds Appl. 2, 539–553 (2012)

    Article  Google Scholar 

  48. Conner, C.: Correcting exercise form using body tracking. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016, pp. 3028–3034 (2016)

    Google Scholar 

  49. Radovanovic, V.: The influence of computer games on visual-motor integration in profoundly deaf children. Br. J. Spec. Educ. 40, 182–188 (2013)

    Article  Google Scholar 

  50. Wille, D., et al.: Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment—a pilot study. Dev. Neurorehabil. 12, 44–52 (2009)

    Article  Google Scholar 

  51. Aditya, V., Dhenki, S., Amarvaj, L., Karale, A., Singh, H.: Saathi: making it easier for children with learning disabilities to understand the concept of time. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016, pp. 56–61 (2016)

    Google Scholar 

  52. Jouhtimäki, J., Kitunen, S., Plaisted, M., Rainò, P.: The brave little troll—a rhythmic game for deaf and hard of hearing children. In: Proceedings of the 13th International MindTrek Conference: Everyday Life in the Ubiquitous Era, Tampere, Finland, 30 September–2 October 2009

    Google Scholar 

  53. Pérez-Arévalo, C., Manresa-Yee, C., Beltrán, V.M.P.: Game to develop rhythm and coordination in children with hearing impairments. In: Proceedings of the XVIII International Conference on Human Computer Interaction, Cancun, Mexico, 25–27 September 2017

    Google Scholar 

  54. Correa, R.A., Osorio, A.: CASETO: Sistema Interactivo Basado en Sinestesia Para La Enseñanza/Aprendizaje De La Música Para Niños Con Discapacidad Auditiva Entre 7 a 11 Años. Editorial Bonaventuriana—Universidad Autonoma de Occidente. Obras colectivas en ciencias de la computación, pp. 37–52 (2017). ISBN 978-958-5415-19-5

    Google Scholar 

  55. Zhu, F., Sun, W., Zhang, C., Ricks, R.: BoomChaCha. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016, pp. 184–187 (2016)

    Google Scholar 

  56. Sogono, M.C., Richards, D.: A design template for multisensory and multimodal games to train and test children for sound localisation acuity. In: Proceedings of the 9th Australasian Conference Interact Entertain Matters Life Death, Melbourne, Australia, 30 September–1 October 2013, pp. 1–10 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Peñeñory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peñeñory, V.M., Manresa-Yee, C., Riquelme, I., Collazos, C.A., Fardoun, H.M., Alghazzawi, D.M. (2019). Interactive Systems Proposal for Psychomotor Rehabilitation in Hearing Impaired Children. In: Fardoun, H., Hassan, A., de la Guía, M. (eds) New Technologies to Improve Patient Rehabilitation. REHAB 2016. Communications in Computer and Information Science, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-030-16785-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16785-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16784-4

  • Online ISBN: 978-3-030-16785-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics